Dr. Schnable's Google Scholar Page
Export Citations
Publications (2021 ~ 2024)
Notes/Symbols Legend
* Authors contributed equally to the article
Impact Factors: 2023 Journal Citation Reports (Clarivate Analytics, June 2024)
PMID: National Center for Biotechnology Information (NCBI) Pubmed ID
2024 (7 articles)Top ⇪
-
(2024) Data-driven identification of environmental variables influencing phenotypic plasticity to facilitate breeding for future climates. New Phytol, 244(2): 618-634. doi:10.1111/nph.19937
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 39183371 | Impact Factor: 8.3 | 25 August 2024 ] -
(2024) TWAS facilitates gene-scale trait genetic dissection through gene expression, structural variations, and alternative splicing in soybean. Plant Commun, 5: 101010. doi:10.1016/j.xplc.2024.101010
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 38918950 | Impact Factor: 9.4 | 24 June 2024 ] -
(2024) ZmPTOX1, a plastid terminal oxidase, contributes to redox homeostasis during seed development and germination. Plant J, 119(1): 460-477. doi:10.1111/tpj.16776
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 38678554 | Impact Factor: 6.2 | 28 April 2024 ] -
(2024) Stalk sap nitrate test as a potential tool for nitrogen fertilizer recommendations for maize. Field Crop Res, 310: 109330. doi:10.1016/j.fcr.2024.109330
-
(2024) Genetics of canopy architecture dynamics in photoperiod-sensitive and photoperiod-insensitive sorghum. Plant Phenome J, 7(1): e20092. doi:10.1002/ppj2.20092
-
(2024) Genetic regulation of self-organizing azimuthal canopy orientations and their impacts on light interception in maize. Plant Cell, 36(5): 1600-1621. doi:10.1093/plcell/koae007
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 38252634 | Impact Factor: 10.0 | 22 January 2024 ] -
(2024) Current challenges and future of agricultural genomes to phenomes in the USA. Genome Biol, 25: 8. doi:10.1186/s13059-023-03155-w
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 38172911 | Impact Factor: 10.1 | 3 January 2024 ]
2023 (8 articles)Top ⇪
-
(2023) Maize leaf angle genetic gain is slowing down in the last decades. Crop Sci, 63(6): 3520-3533. doi:10.1002/csc2.21111
-
(2023) 3D reconstruction of plants using probabilistic voxel carving. Comput Electron Agric, 213: 108248. doi:10.1016/j.compag.2023.108248
-
(2023) A genetic tradeoff for tolerance to moderate and severe heat stress in US hybrid maize. PLoS Genet, 19(7): e1010799. doi:10.1371/journal.pgen.1010799
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 37410701 | Impact Factor: 4.0 | 6 July 2023 ] -
(2023) Harvest index has increased over the last 50 years of maize breeding. Field Crop Res, 300: 108991. doi:10.1016/j.fcr.2023.108991
-
(2023) High-throughput field plant phenotyping: a self-supervised sequential CNN method to segment overlapping plants. Plant Phenomics, 5: 0052. doi:10.34133/plantphenomics.0052
-
(2023) The 2020 derecho revealed limited overlap between maize genes associated with root lodging and root system architecture. Plant Physiol, 192(3): 2394-2403. doi:10.1093/plphys/kiad194
-
(2023) Field-based robotic leaf angle detection and characterization of maize plants using stereo vision and deep convolutional neural networks. J Field Robotics. doi:10.1002/rob.22166
-
(2023) New insights into trait introgression with the look-ahead intercrossing strategy. G3 (Bethesda), 13(4): jkad042. doi:10.1093/g3journal/jkad042
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 36821776 | Impact Factor: 2.1 | 23 February 2023 ]
2022 (4 articles)Top ⇪
-
(2022) Wearable plant sensor for in situ monitoring of volatile organic compound emissions from crops. ACS Sens, 7: 2293-2302. doi:10.1021/acssensors.2c00834
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 35939805 | Impact Factor: 8.2 | 8 August 2022 ] -
(2022) Ten simple rules to ruin a collaborative environment. PLoS Comput Biol, 18(4): e1009957. doi:10.1371/journal.pcbi.1009957
-
(2022) Maize leaf appearance rates: A synthesis from the united states corn belt. Front Plant Sci, 13: 872738. doi:10.3389/fpls.2022.872738
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 35481150 | Impact Factor: 4.1 | 5 April 2022 ] -
(2022) The Agricultural Genome to Phenome Initiative (AG2PI): creating a shared vision across crop and livestock research communities. Genome Biol, 23: 3. doi:10.1186/s13059-021-02570-1
[ Abstract | Full Text PDF (External) | Supplemental Materials | PMID: 34980221 | Impact Factor: 10.1 | 3 January 2022 ]
2021 (15 articles)Top ⇪
-
(2021) A measurement study of TVWS wireless channels in crop farms. IEEE MASS 2021, October 4-7, 2021. doi:10.1109/MASS52906.2021.00051
-
(2021) KAT4IA: K-means assisted training for image analysis of field-grown plant phenotypes. Plant Phenomics, 2021: 9805489. doi:10.34133/2021/9805489
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 34405144 | Impact Factor: 7.6 | 3 August 2021 ] -
(2021) Pheno-mapper: An interactive toolbox for the visual exploration of phenomics data. ACM BCB 2021, August 2021(20): 1-10. doi:10.1145/3459930.3469511
[ 1 August 2021 ] -
(2021) Trajectories of homoeolog-specific expression in allotetraploid Tragopogon castellanus populations of independent origins. Front Plant Sci, 12: 1165. doi:10.3389/fpls.2021.679047
-
(2021) Chromosome-level genome assembly of a regenerable maize inbred line A188. Genome Biol, 22(1): 175. doi:10.1186/s13059-021-02396-x
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 34108023 | Impact Factor: 10.1 | 9 June 2021 ] -
(2021) Meta-analysis identifies pleiotropic loci controlling phenotypic trade-offs in sorghum. Genetics, 218(3): iyab087. doi:10.1093/genetics/iyab087
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 34100945 | Impact Factor: 3.3 | 8 June 2021 ] -
(2021) Identification and utilization of genetic determinants of trait measurement errors in image-based, high-throughput phenotyping. Plant Cell, 33(8): 2562-2582. doi:10.1093/plcell/koab134
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 34015121 | Impact Factor: 10.0 | 20 May 2021 ] -
(2021) A field-deployable, wearable leaf sensor for continuous monitoring of vapor-pressure deficit. Adv Mater Technol, 6(6): 2001246. doi:10.1002/admt.202001246
-
(2021) TWAS results are complementary to and less affected by linkage disequilibrium than GWAS. Plant Physiol, 186(4): 1800-1811. doi:10.1093/plphys/kiab161
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 33823025 | Impact Factor: 6.5 | 6 April 2021 ] -
(2021) Interdisciplinary strategies to enable data-driven plant breeding in a changing climate. One Earth, 4(3): 372-383. doi:10.1016/j.oneear.2021.02.005
-
(2021) An Integrated framework reinstating the environmental dimension for GWAS and genomic selection in crops. Mol Plant, 14(6): 874-887. doi:10.1016/j.molp.2021.03.010
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 33713844 | Impact Factor: 17.1 | 9 March 2021 ] -
(2021) Utility of climatic information via combining ability models to improve genomic prediction for yield within the genomes to fields maize project. Front Genet, 11: 592769. doi:10.3389/fgene.2020.592769
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 33763106 | Impact Factor: 2.8 | 8 March 2021 ] -
(2021) Detection of the progression of anthesis in field-grown maize tassels: a case study. Plant Phenomics, 2021: 4238701. doi:10.34133/2021/4238701
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 33728412 | Impact Factor: 7.6 | 3 March 2021 ] -
(2021) Genome-wide analyses reveal footprints of divergent selection and popping-related traits in CIMMYT's maize inbred lines. J Exp Bot, 72(4): 1307-1320. doi:10.1093/jxb/eraa480
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 33070191 | Impact Factor: 5.6 | 24 February 2021 ] -
(2021) The importance of dominance and genotype-by-environment interactions on grain yield variation in a large-scale public cooperative maize experiment. G3 (Bethesda), 11(2): jkaa050. doi:10.1093/g3journal/jkaa050