
OPEN ACCESS

ll
Perspective

Interdisciplinary strategies to enable
data-driven plant breeding
in a changing climate
Aaron Kusmec,1 Zihao Zheng,1 Sotirios Archontoulis,1,4 Baskar Ganapathysubramanian,2,4 Guiping Hu,3,4 Lizhi Wang,3,4

Jianming Yu,1,4 and Patrick S. Schnable1,4,*
1Department of Agronomy, Iowa State University, Ames, IA 50011, USA
2Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA
3Department of Industrial and Manufacturing Systems Engineering, Iowa State University, Ames, IA 50011, USA
4Plant Sciences Institute, Iowa State University, Ames, IA 50011, USA
*Correspondence: schnable@iastate.edu
https://doi.org/10.1016/j.oneear.2021.02.005

SUMMARY

This perspective lays out a framework to enable the breeding of crops that can meet worldwide demand un-
der the challenges of global climate change. Past work in various fields has produced multiple prediction
methods to contribute to different plant breeding objectives. Our proposed framework focuses on the inte-
gration of these methods into decision-support tools that quantify the effects on multiple objectives of de-
cisions made throughout the plant breeding pipeline. We discuss the complementarities among these
methods with an emphasis on integration into tools that utilize operations research and systems approaches
to help plant breeders rapidly and optimally design new cultivars under extant time, cost, and environmental
constraints. In illustrating this potential, we demonstrate the interconnectedness and probabilistic nature of
plant breeding objectives and highlight research opportunities to refine and combine knowledge acrossmul-
tiple disciplines. Such a framework can help plant breeders more efficiently breed for future environments,
including so-called minor crops, leading to an overall increase in the resiliency of global food production
systems.
INTRODUCTION

To ensure food security crop cultivars must not only produce

high yields, but also do so across a range of management and

environmental conditions. Global climate change challenges

food security by increasing the intensity and frequency of envi-

ronmental perturbations,1 such as extreme precipitation

events,2 which threaten yield stability. In subsistence agriculture,

crop stability is of paramount importance for local food security.3

In high-input systems, management decisions play an important

role in mediating environmental variability to reduce farmers’

risk; however, in the absence of correspondingly well-adapted

cultivars, management decisions alone cannot ameliorate the

detrimental effects of climate change.

Global climate change poses a challenge to plant breeders in

part because cultivars are developed on a time lag. For example,

in hybrid maize breeding, development of a cultivar can take 5–7

years, but these cultivars have a half-life of only 4 years, with

complete turnover in 7 years.4 Variety development in soybean

takes a comparable 6 years.5 Thus, breeders must develop cul-

tivars for certain and uncertain changes in environments of a

decade into the future based on field trials conducted under cur-

rent weather conditions.6 The value of an early selection decision

made under current conditions depends on the uncertainties in

the responses of the selected cultivars to environmental factors

and in predictions of decadal-scale weather patterns. Early
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selection decisions for traits with significant genotype-environ-

ment interactions (GEIs) under such uncertainty can lead to the

loss of useful genetic variation, decreasing genetic gain in the

target environments. The effects of GEIs can be partially

controlled by the use of managed-stress environments and

adequate environmental characterization, although the applica-

tion of these will depend on the resources available to individual

breeding programs. LowGEIs for grain yield and the use of these

strategies have contributed to the relative success of some

breeding programs, for example, maize in the central US

Corn Belt.7

Precision agriculture has been proposed as an important

component of a solution to global food security.8,9 Recent ad-

vances in remote-sensing technologies, cloud-based

computing, and farm machinery enable the collection of real-

time, fine-grained data that can be used to make agile in-season

management decisions to preserve and enhance crop yields.

These technologies promise to shrink the yield gap (the differ-

ence between yield under optimal conditions and realized yield

in production systems) by improving farmers’ ability to respond

appropriately to environmental conditions. However, as retro-

spective analyses show, precision agriculture (or new agronomic

practices in general) must be complemented by well-adapted

cultivars that maintain or improve yield potential as climates

change.10,11 Recent work by Cooper et al.7 has demonstrated

the utility of a prediction framework that integrates traditional
Elsevier Inc.
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Figure 1. Gains in hybrid maize yields
require larger R&D investments over time (in
constant dollars)
(A) Average US maize yields (in bushels/acre and
kilograms/hectare). Yields are categorized by
predominant breeding practice according to
Troyer.25 Best-fit linear regression lines are fit
within each category, and the average rate of gain
in bushels per acre per year is reported. Approxi-
mately 50%–60% of increased yields are due to
genetic gain.10

(B) Public and private sector spending on agricul-
tural research and development in billions of con-
stant dollars (2013 US$).
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plant breeding measures of genetic gain with agronomic gap

analysis techniques to target breeding efforts on those biophys-

ical constraints with the highest impact on realized yields. Devel-

opment of cultivars with reduced yield gaps will be especially

important in the developing world, where the application of pre-

cision agriculture would first require massive investments in

infrastructure12 and education.13

Historically, plant breeding has relied on massive networks of

multienvironment trials (METs) to identify candidate cultivars

worthy of commercial deployment.14 If interactions between a

cultivar’s genotype and environment/management practices

are important to performance, the scale of METs required to

test these interactions can quickly become prohibitively costly

and/or inefficient. Although the use of METs has been enor-

mously successful in multiple crops,15 as a consequence of

the law of diminishing returns, maintenance or acceleration of

current rates of genetic gain requires ever greater investment16

(Figure 1). Hence, this traditional strategy is not economically

sustainable. Global climate change threatens agriculture by, for

example, increasing the yield gap of existing cultivars, threat-

ening further genetic gain,17 and challenging the intensification

of agricultural systems.18 Although there is evidence that existing

germplasm will contribute to adaptation to climate change (e.g.,

in maize19), the combination of uncertainty in long-term climate

predictions and uncertainty in crop responses to likely stresses20

promises to greatly increase the difficulty of breeding for future

climates. Some plant scientists and breeders envision furthering

genetic gain by targeting physiological traits such as radiation-

use efficiency and transpiration efficiency21,22 or population-

level characteristics.23 However, regardless of the targeted

traits, due to the time and cost required for traditional breeding

programs, innovation through in planta and field-based experi-

ments is costly and time consuming, suggesting an urgent

need for efficient, complementary approaches to improve plant

breeding processes.14,24

Until recently, data from METs have generally been used to

identify regionally adapted cultivars14 without a long-term and

large-scale design, with breeding decisions made on the basis

of theory and experimental design derived from quantitative ge-

netics, statistics, biophysical models, and best practices devel-

oped over the course of the past century.26 Advances in crop

growth models (CGMs), high-throughput genotyping, high-

throughput phenotyping (HTP), and environmental sensing and
modeling have transformed different parts of plant breeding

pipelines, but largely without the integration that offers the pos-

sibility of revolutionizing the process of plant breeding. These in-

dividual components are used tomake decisions whose impacts

may not be realized for several years.

In this perspective, we argue that by synthesizing these

emerging technologies within flexible decision-support tools,

plant breeding can be radically transformed to be able to rapidly,

accurately, and cost-effectively evaluate cultivars and develop-

ment pipelines in silico to more optimally use limited in planta

trials. Building on previous work in various fields,24,27–30 we pro-

pose a framework that would facilitate the rapid prototyping of

different breeding and management strategies, allowing

breeders to increase the rate of genetic gain, improve yield sta-

bility, decrease the lengths of breeding cycles, and develop

long-term breeding plans that incorporate both the nearly certain

and the less certain effects of global climate change.

SOURCES OF UNCERTAINTY IN PLANT BREEDING

Plant breeders make probabilistic decisions in the context of

environmental and genetic uncertainties and under constraints

imposed by time and cost. These decisions often involve

trade-offs between competing objectives such as genetic gain

for two different target traits. Twentieth-century plant breeders

made extensive use of different predictive models (discussed

below) to increase the probability of making beneficial, low-risk

decisions. Central to any attempt to develop predictive models

is a thorough enumeration and understanding of the uncer-

tainties, constraints, and trade-offs within the modeled system.

In this section, we briefly review themajor sources of uncertainty,

constraints, and trade-offs navigated by plant breeders during

cultivar development.

First, breeding decisions are inherently constrained by genetic

stochasticity and reproductive biology. Breeders rely on genetic

segregation and recombination events to combine favorable al-

leles frommultiple parents into candidate cultivars. These events

are predictable31 in aggregate, but not yet controllable.32

Because recombination between relevant loci can be rare, it

may be necessary to genotype and/or field evaluate thousands

of offspring to identify a single desired event. Advances in

genome editing techniques hold promise for large-scale, precise

genetic changes,33 although further development is required to
One Earth 4, March 19, 2021 373
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increase their efficiency, throughput, and generalizability to the

diversity of crop species.

Second, breeders must also plan within the constraints

imposed by the environments in which cultivars are to be grown,

which requires breeding cultivars for environments sometimes a

decade in the future while evaluating them in present environ-

ments.14 Large-scale, long-term climate predictions of sufficient

accuracy exist but are still subject to uncertainty,34 which in-

creases as models reach regional scales.35 For example, this

has negative impacts on the accuracy of prediction of precipita-

tion,36 a key input factor in crop yields. Finer-scaled predictions

at the level of individual fields or parts of fields are more uncer-

tain. It should also be recognized that there are additional

factors, such as soil fertility dynamics and pest and disease

damage, that are not incorporated into current models yet affect

crop performance.37

Third, uncertainty in weather prediction interacts with uncer-

tainty in the responses of crops to different environmental factors

to determine the overall level of prediction uncertainty.20 Quanti-

fication of the relative uncertainties from these factors can be

used to direct future research/breeding efforts and should be

included in models to provide more realistic assessments. For

example, incorporation of moderately accurate weather fore-

casts has been shown to improve farmer profitability when

used to optimize crop mixtures and management decisions,38,39

which could be easily extended to the choice of cultivar(s)

to plant.

Fourth, breeding decisions are constrained by cost and time.

Fundamental time constraints are imposed by the reproductive

biology of different crops and genetics, although some methods

to relax this constraint have been developed for some crops,

including speed breeding,40 doubled-haploid technology,41 off-

season nurseries, and tissue-culture-based embryo rescue

that can reduce the length of the crop life cycle. The number

and scale of yield tests that are performed also substantially in-

fluence the time and cost of a breeding program14 and affect the

precision with which differences between candidate and current

cultivars can be estimated.42 The length of the development cy-

cle also influences the amount of uncertainty in environmental

predictions because longer development cycles require the pre-

diction of environmental conditions further into the future.

Finally, breeding decisions and these constraints interact to

produce trade-offs. Many commercial cultivars have had traits

introgressed from non-commercial cultivars or carry packages

of traits introduced via genetic modification (GM) technologies.

Introducing these traits into new cultivars adds time and cost

to the breeding pipeline.43 In addition, trait introgression is con-

strained by the biology of the crop, and, in the case of GM traits,

is subject to a patchwork of regulatory regimes depending on

target markets. An additional constraint comes from the neces-

sary erosion of genetic diversity over the course of the breeding

pipeline.44 Although this is an intrinsic effect of the process of

breeding superior cultivars, the maintenance and introduction

of genetic variation are required for continued genetic gain.45

Breeders must balance the need for short-term gain to produce

new cultivars with the consideration for long-term gain alongside

maintaining and introducing favorable alleles for multiple traits in

their populations without yield penalties. Although genomic pre-

diction has the capacity to increase the rate of genetic gain in the
374 One Earth 4, March 19, 2021
short term, it also rapidly erodes genetic variance.44 Methods

that preserve genetic variance have been proposed,46–49 poten-

tially at the cost of reduced rate of genetic gain in the short term.

Explicit consideration of these constraints by breeders in the

context of robust management options available to farmers is

critical to improving the ability of breeders to make data-driven,

probability-based decisions by integrating diverse datasets and

enabling stochastic modeling of outcomes. When extended

beyond the breeding pipeline for a single cultivar, this approach

can help breeders plan long term to produce crops that can

handle the demands of global climate change and global food

security. However, these constraints can be handled only to

the extent that their effects are faithfully reproduced and accu-

rately and precisely predicted by the models used to make plant

breeding decisions.

PREDICTIVE MODELS FOR PLANT BREEDING

Accurate yield predictions help famersmake informed economic

and management decisions and can support strategies for plant

breeding programs of various purposes.24 Historically, yield pre-

dictions have been generated by statistical models based on

quantitative genetics theory,50 CGMs51, and machine learning52

(ML), which have complementary strengths and limitations. The

application of any particular modeling approach depends on the

objective of the prediction and the relevant constraints. In this

section, we provide a brief overview of these threemodeling par-

adigms in the context of plant breeding and then argue for the

value of their combination in a nested modeling framework.

Combining these approaches offers the potential to improve pre-

diction accuracies for decision-making in breeding while

providing insights into underlying biological processes.53,54

Historical models for yield prediction
Prior to the advances in computing power that have enabled

large-scale application of ML and CGMs, trait prediction and

breeding methods relied heavily on quantitative genetics theory.

The pioneering work of Charles Henderson on the use of pedi-

grees and mixed linear models for predictions of genetic merit

in animal breeding was widely adopted in both animal and plant

breeding.55 The development of molecular markers in the 1980s

allowed breeders to make predictions on the basis of realized

genetic relationships rather than expected statistical relation-

ships. However, the full power of molecular markers was not

realized until the development of genomic prediction methods

that use all available markers in regularized statistical models.56

The further development of high-throughput genotyping and

doubled-haploid technologies substantially improved breeding

programs.57 Much subsequent research has focused on the

application of genomic prediction to breeding populations58–60

and the elaboration of more flexible models that also include

GEIs.61–65 These models are, however, fundamentally simple,

modeling the genotype-phenotype relationship as the sumof ad-

ditive genetic effects. Increasing complexity by increasing the

number of markers, accounting for epistasis, allowing GEIs,

and considering non-linear relationships is a challenging statisti-

cal and computational problem.66

CGMs were originally developed to assist with agronomic

management decisions.67 CGMs are biophysical models based
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on physiological parameters and non-linear relationships be-

tween phenotypes and environment.68 Although several applica-

tions of CGMs in major crops have been successful,69 links be-

tween CGMs and plant breeding are still in their infancy.7,70–73

Because CGMs depend on physiological parameters that may

vary genetically, experimental estimation of these parameters

limits the application of CGMs at the scale of breeding programs.

Recent work has demonstrated some success with in silico esti-

mation of these parameters from experimental data,74,75 but

challenges remain.76 Alternatively, yield predictions can be

improved using models that are agnostic to the actual values

of the CGM parameters.73,77

ML has gained popularity in human and plant genetics in

recent years.78,79 In the context of trait prediction, ML models

treat phenotype as an unknown function of genotype, environ-

ment, and their interactions and attempt to approximate their

complex, often non-linear relationships by learning from large

sets of training data. Many methods, such as neural networks,

can approximate any complex function, although identifying

the optimal hyperparameters is often challenging.80,81 Other

methods are scalable to large datasets and have reasonably

high prediction accuracies.82 However, due to the black-box

nature of many ML models, it can prove difficult to explain why

predictions are accurate or not, and they do not reveal the under-

lying effects that can form the basis of further biological research

to improve physiological models and refine breeding objectives.

Endowing MLmodels with interpretability mechanisms and prin-

cipled approaches, such as adding domain constraints into ML

models, is a promising avenue that the ML community is

exploring to broaden their applicability.83

Nested models for predictive plant breeding
The strengths and weaknesses of these three modeling ap-

proaches are complementary; thus, combining them has the po-

tential to improve prediction of yield and other traits. We propose

a nested modeling strategy (Figure 3B) in which, by directly

modeling physiological processes, CGMs integrate the outputs

of quantitative genetic and ML models as biologically interpret-

able patterns of variation26 for key adaptive traits and other traits

of interest that are segregating in the breeding population.

For example, parallel advances in phenomics and ML have

enabled themeasurement and extraction both of traditional phe-

notypes at expanding scales and of novel phenotypes. Incorpo-

ration of these data into breeding programs is an open research

question.84 From a basic science perspective, they provide the

opportunity to increase the surveyed genetic variation in the con-

struction of CGMs,85 potentially leading to refinement of models

through expansion of phenotyping for physiological processes.

This can also benefit traditional quantitative genetics character-

ization of context-dependent allelic effects in networks of

METs.27 Identification of key alleles for adaptive traits may

then directly inform breeding decisions or influence the con-

struction of CGMs. In this nested framework, the strengths of

ML models for extracting traits from HTP data and quantitative

genetic models for modeling the genetic basis of phenotypic

variation are complemented by the incorporation of physiolog-

ical processes and environmental variation from CGMs to pro-

duce probabilistic evaluations of likely yield outcomes under

various climate change scenarios.
CGMs, therefore, playing a key role in linking the different clas-

ses of models used in the various disciplines that contribute to

plant breeding, and their improvement are of vital importance

to the success of various proposals for the future of predictive

plant breeding.14,27,73,86 This integrative role, then, depends on

the construction of CGMs with appropriate structures that oper-

ate on appropriate data.

CROP GROWTH MODELS

Structurally, a CGM can be thought of as a system of differential

equations whose functional forms encapsulate the relationships

between abiotic and biotic factors, crop physiology, and yield

determined from retrospective modeling of experimental data

with concomitant levels of accuracy and precision. For predic-

tive breeding, the coefficients of these equations may vary

genetically, introducing another layer of uncertainty.

Considering the demonstrated and expected contributions of

CGMs to predictive plant breeding, it is important to consider in

what ways CGMs might be improved as models of crop physi-

ology in general and for their utility in simulating the outcomes

of breeding decisions. Below, we discuss five general areas in

which CGMs can be improved by refining the modeled relation-

ships between environment and physiology (the first and second

areas), updating the modeled environmental factors with current

knowledge (the third and fourth), and incorporating genetic vari-

ation for the modeled physiological relationships (the fifth). We

note that the following discussion is necessarily general and re-

flects the authors’ judgment; further in-depth discussion of these

and related domains can be found in related literature (e.g.,

Muller and Matre28 and references therein).

Improve modeling of physiological processes
Much progress in modeling dynamic, biophysical processes has

been made since the earliest CGMs were proposed. However,

substantial knowledge gaps in fundamental processes remain,

and new research has highlighted the importance of previously

unmodeled processes.87 Over the past decade improvements

have been made in the simulation of maize nitrogen dynamics88,

maize grain growth dynamics89, simulation of root depth by

considering excess water stress90, improvement of maize

phenology prediction91, and new routines to simulate biomass

partitioning in crops.92 These are all promising avenues of

research, but they are often made in different crop species and

CGMs. Coordination of physiological modeling progress across

models and species will be required to realize the full potential of

this research.

Introduce precise measurements of current and novel
physiological parameters by high-throughput
phenotyping
Reynolds et al.84 reviewed numerous HTP methods and how the

traits they measure relate to current breeding practices. Pheno-

typing is needed not only for selection decisions but also for

genomic studies and translational research, among others. The

specific-use case and cost-benefit ratio will be driving factors

in the adoption of these technologies for various breeding pur-

poses. HTP has the potential to reduce the cost and time neces-

sary to measure key CGM parameters, improve the quality of
One Earth 4, March 19, 2021 375
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CGM simulations for individual cultivars, and enable prediction

of CGM parameters for unphenotyped germplasm. In addition

to the accuracy of the trait measurements, emphasis should

also be placed on collecting accurate management inputs for

the CGM. For example, Archontoulis et al.51 reported that the ac-

curacy of management inputs accounted for one-quarter of the

variability in maize yield prediction.
Improve modeling of extreme weather events
The majority of CGMs have been calibrated and tested using a

narrow set of observations that do not include extreme weather

events. Extreme weather events are predicted to increase in fre-

quency and severity1,2, and their impacts on crop yields are often

complex, non-linear, and dependent on other stresses.93,94 For

example, uncertainty in crop responses to temperature has a

relatively high contribution to uncertainty in the effects of climate

change on agriculture.20 High temperatures decrease crop yields

in a non-linear fashion, with variable effects when combined with

drought stress and/or increasing CO2 concentrations,19,93 and

these interactions are species dependent. CGMs that accounted

for the effects of such events would be better able to inform

breeders about the impact of environmental change and uncer-

tainty on breeding decisions. Weather events can also damage

plants, leading to changes in trait values that have an impact on

yield, such as hail damage that reduces leaf area index.95 Thus,

in addition to physiological processes, future improvements

should incorporate functions to simulate plant damage.
Improve modeling of edaphic factors
A recent study reported that simulation of soil processes is less

accurate than simulation of crop processes.51 This suggests that

more emphasis needs to be placed on modeling dynamic envi-

ronmental factors such as the microbiome, soil, water, and nutri-

ents that determine the magnitude of plant stress and therefore

the resulting yield gap.
Integrate genetic variation for key crop model input
parameters
The difficulty of measuring the physiological parameters

required by CGMs means that these models generally incorpo-

rate only a small sample of available genetic variation at best

(see, for example, Padilla and Otegui85). Promising results for

expansion of this genetic sample have been obtained

using combinations of HTP, statistical models, ML, and

CGMs,72,74,75 although challenges remain due to the large num-

ber of combinations of CGM parameters that can lead to the

same output.76 To a certain extent, these all represent partial sta-

tistical fixes. A gold-standard CGM would incorporate direct

measurements of physiological parameters, likely measured by

HTP, and functional forms based on knowledge about the

biological networks underlying the modeled processes at an

appropriate level of abstraction. Although previous work has

demonstrated that it is possible to improve the prediction accu-

racy of maize grain yield even without accurate knowledge of ge-

netic variation for CGM parameters,73,77 the effect on prediction

accuracy of integrating the measurements discussed here re-

mains an open research question.
376 One Earth 4, March 19, 2021
DATA TO ENABLE PREDICTIVE PLANT BREEDING

The success of predictive models depends not only on their

structures but also on the data on which they are trained. Plant

breeding models depend on three broad classes of data: ge-

netic, phenotypic, and environmental (Figure 4). Advances in

molecular, remote-sensing, computational, and other technolo-

gies have greatly expanded the volume and variety of data avail-

able to plant breeders. Equally important to the integration of

different modeling paradigms will be the principled integration

of these data classes into plant breeding efforts (see Reynolds

et al.84 for a recent example). In this section, we briefly review

salient advances and promising research directions in genotyp-

ing, phenotyping, and envirotyping.

Genotyping
Next-generation sequencing technologies such as mRNA se-

quencingenabled high-throughput discovery of molecular

markers96,97 and characterization of molecular intermediaries

between DNA and phenotype.98,99 The quantitative importance

to phenotypic variation of other sequence-level characteristics,

such as epigenetic marks, non-coding variation, and micro-

RNAs, is an area of ongoing investigation.100 In parallel, invest-

ments in computational infrastructure to store and analyze these

data have been, and will continue to be, made.101–104 Recent

research on cryptographic protocols for genomic data sharing

and analysis105,106 may further collaboration between the public

and the private sectors to leverage the extensive databases of

genotypic and phenotypic data warehoused by industry while

preserving proprietary information. Because a limited number

of candidate cultivars can be field tested, genotypes serve as

a critical link between field-tested materials and untested mate-

rials held by breeding companies and in international gene

banks.107 We expect that further advances in high-throughput

genotyping will continue to stimulate research into efficient and

robust methods for identifying genotype-phenotype associa-

tions and prediction that will increase biological insight into

physiological processes that can be used to improve CGMs

and allow breeders to utilize larger pools of genetic diversity in

breeding decisions.

Phenotyping
HTP has stimulated research into novel plant phenotypes,108

ML,109 artificial intelligence,110 and computer vision.111 For

example, HTP research has expanded beyond traditional RGB

(red, green, blue) imaging to include hyperspectral, 3D, and other

spectroscopicmodalities.112 The proximal challenge for HTP is its

integration into plant breeding, where the definition and utility of

different phenotypesmaydiffer between the twofields.84Depend-

ing on the stageof cultivar development, crop, andphenotype, ac-

curate and precise phenotypes may be needed for individual

plants or rows to make selection decisions. Therefore, HTP re-

quires rigorous evaluation to identify and mitigate sources of

error113,114 (Y. Zhou, A.K., and P.S.S., unpublished data).

Numerous avenues for improving the accuracy of HTP methods

exist, including data augmentation,115 algorithmic developments,

objective redesign, and multisensor modalities.116,117 Moreover,

HTP also enables the measurement of novel phenotypes through

multimodal, time-series-aware sensing technologies118 that can



Figure 2. An idealized hybrid maize
breeding program
Separate male and female heterotic pools are
maintained and improved by crossing elite inbred
lines within pools, generating doubled-haploid
lines (DHs), and retaining candidates that perform
well in per se field evaluations. New DHs are
crossed with appropriate DHs (testers and elite
lines) from the opposite heterotic pool and sub-
jected to successive yield trials at increasing scale,
leading to the release of 0–2 new hybrids. Exam-
ples of required breeding decisions are noted to
illustrate the diversity, complexity, and number of
decisions leading to the production of a single
hybrid. Modified from Bernardo122 and Cooper
et al.14 GM, genetically modified; GP, genomic
prediction.
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help identify previously uncharacterized phenotypic hierar-

chies.119 It has long been acknowledged that HTP can be used

to improve and train various predictive models. Combinations of

these technologies can help breeders identify early yield and yield

stability signatures and enable inference of difficult-to-measure

traits frommoreeasilymeasured traitsusingappropriatemodeling

strategies.86 Finally, HTP can provide directions and feedback on

the development of CGMs and plant ideotypes that will be benefi-

cial in future environments.

Envirotyping
Environments includeboth the impactsofweatherandclimateand

themanagement decisionsmadeby farmers. Theyare the context

in which cultivars develop and express phenotypes. The chal-

lenges posed by the interaction of genotype and environment

have longbeen recognized.120Proper integrationofenvironmental

information for agriculture includes both short-term predictions

used by farmers to make management decisions and long-term

predictions used by breeders to develop new cultivars. Optimal

decision-making in plant breedingwill rely on the proper propaga-

tion of uncertainty from climatemodels at relevant spatiotemporal

scales into CGMs and simulation platforms. Recent work on char-

acterizing environments using multidimensional indices29 and

simulationplatforms30 represent promising advances in this direc-

tion. Continued improvement of environmental-sensing technolo-

gies complements HTP methods116 by enabling field-level moni-

toring for management decisions and linkage of plant-level

phenotypes tomicroenvironments.Concurrently, research should

also be focused on linking data from controlled and managed

stress environments with performance in field environments14,113
and the construction of facilities for pheno-

typing in extreme environments that are

important to future conditions but unlikely

to occur at present.121

INTEGRATINGDECISION-SUPPORT
TOOLS/PLATFORMS AND PLANT
BREEDING

Plant breeders make numerous and

diverse decisions during cultivar develop-

ment. These include decisions driven by

biology (e.g., choice of existing cultivars
to mate, advancement decisions, locations and scales of yield

tests) and decisions driven by economics (e.g., budget con-

straints, development cycles, target markets, and the discount

rate) (Figure 2). For example, Syngenta estimated that its soy-

bean breeders make approximately 200 binary decisions over

the course of 6 years to develop a single cultivar.5 These deci-

sions interact with one another and with various stochastic fac-

tors (e.g., environmental conditions and genetic recombination)

to affect the probability of success. The consequences of these

decisionsmay notmanifest until years later and be attributable to

specific decisions only with low confidence, if at all.

Thus, it is critical that plant breeders be able to integrate data

and models from multiple disciplines so they can make more

informed decisions to balance risk and profitability subject to

biological and economic constraints. Decision-support tools/

platforms (DSTs) that leverage advances in operations research,

computational intelligence, and simulation models are a prom-

ising avenue to achieve this integration goal.5,123 These tools

and platforms must be flexible and efficient, allowing breeders

to simulate and evaluate the effects of different decisions on

the probability of successful cultivar development in the context

of environmental uncertainty caused by global climate change.

A key component of operations research approaches is

proper model formulation that reflects the breeding system deci-

sion dynamics under uncertainty. Some aspects of thesemodels

will depend on the details of the reproductive biology of different

crops and the strategies and technologies available to breeders.

In this section, we provide example applications of DSTs to plant

breeding, integrating the uncertainties, decision points, models,

and data classes discussed in the previous sections (Figure 4).
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Figure 3. Schematic of model integration for improved yield
predictions
(A) Diverse, high-dimensional data sources generated by high-throughput
phenotyping are used to train machine learning (ML) trait extraction models to
produce numerous (semi-)automated phenotypes (~t) at scale. Extraction
models are calibrated on a smaller set of manually collected phenotypes (T ).
(B) Traits from high-throughput phenotyping (~t), genotypes (G), and environ-
mental factors (E) serve as inputs to ML and quantitative genetics-based
models for phenotype prediction ( bT ) of unphenotyped candidates. Predicted
phenotypes and environmental factors serve as input to crop growth models,
which produce yield predictions ( bY ). Biological insights derived from quanti-
tative genetics-based models and comparison of predicted yields to actual
yields (Y ) can be used to stimulate basic science research leading to refine-
ment of crop growth models.
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Throughout this section, we use hybrid maize breeding as an

example (Figure 2).

The first potential application is to the definition of the target

population of environments (TPE) and target traits in the planning

stage of a cultivar development pipeline. The TPE defines the

environmental and management conditions under which a

cultivar is expected to perform. This helps define targeted adap-

tive traits and provides a benchmark for genetic gain through

comparison with the observed performance of cultivars currently

grown in the current TPE. A TPE needs to be narrow enough that

a reasonable suite of adaptive traits can be defined, that achiev-

able goals for genetic gain can be determined, and that stable

performance within the TPE is highly probable. At the same

time, a TPE has to be wide enough to recoup the development

costs of new cultivars. Climate modeling combined with digital

gap analysis7 could be used to identify where yield gaps are likely

to occur by the end of a development pipeline to guide cultivar

design decisions. The same climate simulations could also be

used to assess likely patterns of future environmental variation

thatmay require redefinition of the TPE.19 Physiologicalmodeling

could then be used to identify adaptive traits that contribute to

increased yield in the TPE.6 A range of possible ideal cultivars

could be evaluated for feasibility using estimates of predicted ge-

netic gain for the identified traits that incorporate, among other

factors, phenotyping costs, available genetic variation, and
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accuracy of genomic predictionmodels. This may lead to an iter-

ative process that further refines the TPE and target adaptive

traits based on expected development costs and time.

A second potential application is recurrent population

improvement (e.g., Figure 2, part 1). Generally, recurrent popula-

tion improvement seeks to produce genetic gain for one or more

key traits while meeting two conflicting objectives. The first

objective is to realize enough genetic gain that the population

can be sampled periodically to produce improved cultivars

(e.g., hybrids in Figure 2, part 2). The second objective is tomain-

tain genetic variation generally in the population to enable long-

term genetic gain and selection on traits that may increase in

importance in the future. Due to correlations between multiple

traits and the negative impact of selection on genetic variation,

these objectives are often conflicting. Recent work49 has

demonstrated how such multitrait objectives could be ad-

dressed by proposing flexible multitrait desired gains indices

that are evaluated through stochastic genetic simulation of pro-

posed crosses subject to time and resource constraints. The

proposed approach was shown to have a higher probability of

achieving the desired genetic gains while maintaining genetic

variation for target and non-target traits.

A thirdpotential application is thedesignofMETs.METsnarrow

down the set of candidate cultivars by testing them at an ever-

wider network of trial locations that sample the TPE (Figure 2,

part 2). The scale of testing depends on the expected variability

within the TPE and is constrained by per-trial costs. It is critical

that the trial locations be a representative sample of the TPE’s di-

versity because the expected genetic gain in the TPEdepends on

thesimilarity between theTPEand theenvironmentswhereselec-

tion is performed (i.e., theMET). Climatemodeling and stochastic

weather generators can be used to quantify the likely characteris-

tics of a futureTPE.These forecastscan thenhelpwith several de-

cisions. By providing an estimate of the relevant dimensions of

environmental variability, they can be used to determine which

characteristics of trial locations shouldbeprioritizedand the sam-

pling density of those environmental variables. Another applica-

tion is to cross-reference the forecasts with historical and

expected conditions at current trial locations to determine their

suitability for making selection decisions. This may lead to the

consideration of new trial locations, which may be undesirable

due to economic constraints, and this could be weighed against

probabilistic estimates of genetic gain under different location

combinations. Possible reductions in the number of trial locations

could also lead to thepossibility of evaluatingmorecandidate cul-

tivars, improving sampling of the genetic and GEI variability.

CONCLUSIONS

This perspective lays out a vision for a framework to integrate

CGMs, high-throughput genotyping, HTP, and environmental

sensing andmodeling with new advances in statistical modeling,

ML, and operations research in flexible and efficient decision-

support tools (Figure 4). These tools would facilitate the rapid

design, development, evaluation, and modeling of new crop cul-

tivars under genetic and environmental uncertainty. To that end,

we have emphasized the complementarity of emerging, data-

driven techniques and traditional statistical and biological

models. We also recognize that there is often significant lag



Figure 4. Concept map illustrating the relationships among decision-support tools, models, genotypes, phenotypes, and environments
Genotype, phenotype, and environment are incorporated into the nested model of Figure 3B, which produces yield and other trait predictions. These predictions
along with genotype, phenotype, and environment are evaluated in decision-support tools that can direct further research.
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timebetween thedevelopment of newmethodsand technologies

and their widespread adoption. Prospects for rapid deployment

of these tools must consider as development objectives consis-

tencywith users’ end needs,materials for education and training,

and development of necessary operational infrastructure.

The data-driven nature of these tools makes them applicable

to three further cases. First, approximately 7.4 million plant

accessions are held in gene banks along with vast libraries of

insufficiently field-testedmaterials in public and private breeding

programs that are underutilized in current breeding schemes due

to resource constraints. The approaches described in this

perspective can be used to leverage these accessions for further

crop improvement, bringing in much needed sources of genetic

variation.107

Second, these tools are applicable to so-called minor crops

that play outsized roles in human nutrition (e.g., casava and ba-

nana, among others), which have thus far received less attention

from plant breeders, despite the fact that some of them

contribute substantially to the human food supply.124 The lack

of genetic, phenotypic, and physiological resources for these

crops hampers traditional breeding efforts. The tools we have

described could be used to accelerate the accretion of better

knowledge bases in these crops for future breeding efforts and

development of predictive models. Investment in these crops

may provide outsized benefits compared with the return

achieved from investments in established breeding programs

for major crops, including by diversifying global food systems.125

Third, persistent hunger126 and famine127 remain obstacles to

global food security in the 21st century. Ending global hunger,

improving food security, and developing sustainable agricultural

practices are components of the United Nations Sustainable

Development Goals for 2030 (https://sdgs.un.org/goals). These
efforts would be assisted through the diversification of global

food systems discussed above. In addition, the tools and inte-

gration we describe can contribute to the realization of these

goals and serve as foundations for broader simulations and pre-

dictions of the vulnerabilities in complex agricultural systems to

predict impending famines with sufficient advance notice to

potentially mitigate deleterious health and social effects.

Due to population growth and changing consumer prefer-

ences, maintenance of global food security requires more than

maintaining current rates of genetic gain, particularly in the

context of the diminishing returns of R&D investments in

breeding major crops (Figure 1). The challenge of breeding to

meet these demands would exist even in the absence of global

climate change. However, global climate change challenges

the fundamentally prospective nature of plant breeding by shift-

ing the climate and increasing weather variability, introducing

more uncertainty into the evaluation of new cultivars in current

environments. Therefore, improved cultivars must also demon-

strate improved performance and stability with respect to a

wider range of environmental perturbations based on predic-

tions of future environments. The data-driven approaches we

describe and their integration into decision-support tools have

the potential to revolutionize 21st century plant breeding by

enabling breeders to rapidly and cost-effectively design and

develop appropriate cultivars for these future environments.
EXPERIMENTAL PROCEDURES

Resource availability
Lead contact
Further information and requests for resources should be directed to and will
be fulfilled by the corresponding author, Patrick S. Schnable (schnable@
iastate.edu).
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Materials availability
This study did not generate new unique materials.
Data and code availability
Data and code to reproduce Figure 1 can be obtained from GitHub (https://
github.com/amkusmec/OneEarthPerspective). Data for Figure 1A were
retrieved from the US Department of Agriculture-National Agricultural Statis-
tics Service (USDA-NASS) website (https://quickstats.nass.usda.gov/) on
August 20, 2020. The following options were selected:

d Select Commodity: SURVEY > CROPS > FIELD CROPS > CORN >
YIELD > CORN, GRAIN – YIELD, MEASURED IN BU/ACRE > TOTAL

d Select Location: NATIONAL > US TOTAL
d Select Time: 1866–2019 > ANNUAL > YEAR

Data for Figure 1B were retrieved from the USDA-Economic Research Ser-
vice (USDA-ERS) website (https://www.ers.usda.gov/data-products/
agricultural-research-funding-in-the-public-and-private-sectors/) accessed
on August 20, 2020.

Regression analysis
Following Troyer25, average yield for each year was assigned to one of four
categories: ‘‘open-pollinated’’ (1866–1929), ‘‘double cross’’ (1930–59), ‘‘single
cross’’ (1960–94), and ‘‘biotech/GMO’’ (1995–2019). Linear regression of yield
on year within each category was used to estimate the average rate of gain in
bushels per acre per year. Best-fit lines and average rates of gain are reported
in Figure 1.
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quı́n, D., Campos, G.de los, Burgueño, J., González-Camacho, J.M.,
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learning improve genomic prediction of complex human traits? Genetics
210, 809–819.

82. Khaki, S., and Wang, L. (2019). Crop yield prediction using deep neural
networks. Front. Plant Sci. 10, 621.

83. Washburn, J.D., Mejia-guerra, M.K., Ramstein, G.P., Kremling, K.A.G.,
Valluru, R., Buckler, E.S., and Wang, H. (2019). Evolutionarily informed
deep learning methods for predicting relative transcript abundance
from DNA sequence. Proc. Natl. Acad. Sci. U S A 116, 5542–5549.

84. Reynolds, M., Chapman, S., Crespo-Herrera, L., Molero, G., Mondal, S.,
Pequeno, D.N.L., Pinto, F., Pinera-Chavez, F.J., Poland, J., Rivera-
Amado, C., et al. (2020). Breeder friendly phenotyping. Plant Sci. 295,
110396.

85. Padilla, J.M., and Otegui, M.E. (2005). Co-ordination between leaf initia-
tion and leaf appearance in field-grown maize (Zea mays): genotypic dif-
ferences in response of rates to temperature. Ann. Bot. 96, 997–1007.

86. Eeuwijk, F.A. Van, Bustos-Korts, D.V., Millet, E.J., Boer, M.P., Kruijer, W.,
Thompson, A., Malosetti, M., Iwata, H., Quiroz, R., Kuppe, C., et al.
(2018). Modelling strategies for assessing and increasing the effective-
ness of new phenotyping techniques in plant breeding. Plant Sci.
282, 23–39.

87. Boote, K.J., Jones, J.W., White, J.W., Asseng, S., and Lizaso, J.I. (2013).
Putting mechanisms into crop production models. Plant Cell Environ. 36,
1658–1672.

88. Soufizadeh, S., Munaro, E., McLean, G., Massignam, A., van Oosterom,
E.J., Chapman, S.C., Messina, C., Cooper, M., and Hammer, G.L. (2018).
Modelling the nitrogen dynamics of maize crops – Enhancing the APSIM
maize model. Eur. J. Agron. 100, 118–131.

89. Messina, C.D., Hammer, G.L., McLean, G., Cooper, M., van Oosterom,
E.J., Tardieu, F., Chapman, S.C., Doherty, A., and Gho, C. (2019). On
the dynamic determinants of reproductive failure under drought in maize.
In Silico Plants 1, diz003.

90. Ebrahimi-Mollabashi, E., Huth, N.I., Holzwoth, D.P., Ordóñez, R.A., Hat-
field, J.L., Huber, I., Castellano, M.J., and Archontoulis, S.V.( (2019).
Enhancing APSIM to simulate excessive moisture effects on root growth.
Field Crops Res. 236, 58–67.

91. Tollenaar, M., Dzotsi, K., Kumudini, S., Boote, K., Chen, K., Hatfield, J.,
Jones, J.W., Lizaso, J.I., Nielsen, R.L., Thomison, P., et al. (2017).
Modeling the effects of genotypic and environmental variation on maize
phenology: the phenology subroutine of the AgMaize crop model. In
Agroclimatology: Linking Agriculture to Climate Agronomy Monograph,
J.L. Hatfield, M.V.K. Sivakumar, and J.H. Prueger, eds., pp. 173–200.

92. Brown, H.E., Huth, N.I., Holzworth, D.P., Teixeira, E.I., Wang, E., Zyskow-
ski, R.F., and Zheng, B. (2019). A generic approach to modelling, alloca-
tion and redistribution of biomass to and from plant organs. In Silico
Plants 1, diy004.
382 One Earth 4, March 19, 2021
93. Schauberger, B., Archontoulis, S.V., Arneth, A., Balkovic, J., Ciais, P.,
Deryng, D., Elliott, J., Folberth, C., Khabarov, N., Muller, C., et al.
(2017). Consistent negative response of US crops to high temperatures
in observations and crop models. Nat. Commun. 8, 13931.

94. Lesk, C., Coffel, E., and Horton, R. (2020). Net benefits to US soy and
maize yields from intensifying hourly rainfall. Nat. Clim. Chang. 10,
819–822.

95. Conley, S.P., Abendroth, L., Elmore, R., Christmas, E.P., and Zarnstorff,
M. (2008). Soybean seed yield and composition response to stand reduc-
tion at vegetative and reproductive stages. Agron. J. 100, 1666–1669.

96. Elshire, R.J., Glaubitz, J.C., Sun, Q., Poland, J.A., Kawamoto, K.,
Buckler, E.S., and Mitchell, S.E. (2011). A robust, simple genotyping-
by-sequencing (GBS) approach for high diversity species. PLoS One 6,
e19379.

97. Ott, A., Liu, S., Schnable, J.C., Yeh, C.-T.E., Wang, K.-S., and Schnable,
P.S. (2017). tGBS� genotyping-by-sequencing enables reliable geno-
typing of heterozygous loci. Nucleic Acids Res. 45, e178.

98. Lin, H.-Y., Liu, Q., Li, X., Yang, J., Liu, S., Huang, Y., Scanlon, M.J., Net-
tleton, D., and Schnable, P.S. (2017). Substantial contribution of genetic
variation in the expression of transcription factors to phenotypic variation
revealed by eRD-GWAS. Genome Biol. 18, 192.

99. Kremling, K.A.G., Chen, S.-Y., Su, M.-H., Lepak, N.K., Romay, M.C.,
Swarts, K.L., Lu, F., Lorant, A., Bradbury, P.J., and Buckler, E.S.
(2018). Dysregulation of expression correlates with rare-allele burden
and fitness loss in maize. Nature 555, 520–523.

100. Xu, G., Lyu, J., Li, Q., Liu, H., Wang, D., Zhang, M., Springer, N.M., Ross-
Ibarra, J., and Yang, J. (2020). Evolutionary and functional genomics of
DNA methylation in maize domestication and improvement. Nat. Com-
mun. 11, 5539.

101. Nekrutenko, A., and Taylor, J. (2012). Next-generation sequencing data
interpretation: Enhancing reproducibility and accessibility. Nat. Rev.
Genet. 13, 667–672.

102. Bradbury, P.J., Zhang, Z., Kroon, D.E., Casstevens, T.M., Ramdoss, Y.,
and Buckler, E.S. (2007). TASSEL: Software for association mapping of
complex traits in diverse samples. Bioinformatics 23, 2633–2635.

103. Lipka, A.E., Tian, F., Wang, Q., Peiffer, J.A., Li, M., Bradbury, P.J., Gore,
M.A., Buckler, E.S., and Zhang, Z. (2012). GAPIT: genome association
and prediction integrated tool. Bioinformatics 28, 2397–2399.

104. Paten, B., Novak, A.M., Eizenga, J.M., and Garrison, E. (2017). Genome
graphs and the evolution of genome inference. Genome Res. 27,
665–676.

105. Blatt, M., Gusev, A., Polyakov, Y., and Goldwasser, S. (2020). Secure
large-scale genome-wide association studies using homomorphic
encryption. Proc. Natl. Acad. Sci. U S A 117, 11608–11613.

106. Mott, R., Fischer, C., Prins, P., and Davies, R.W. (2020). Private genomes
and public SNPs: homomorphic encryption of genotypes and pheno-
types for shared quantitative genetics. Genetics 215, 359–372.

107. Yu, X., Li, X., Guo, T., Zhu, C., Wu, Y., Mitchell, S.E., Roozeboom, K.L.,
Wang, D., Wang, M.L., Pederson, G.A., et al. (2016). Genomic prediction
contributing to a promising global strategy to turbocharge gene banks.
Nat. Plants 2, 16150.

108. Zheng, Z., Hey, S., Jubery, T., Liu, H., Yang, Y., Coffey, L., Miao, C., Sig-
mon, B., Schnable, J.C., Hochholdinger, F., et al. (2020). Shared genetic
control of root system architecture between Zea mays and Sorghum
bicolor. Plant Physiol. 182, 977–991.

109. Miao, C., Pages, A., Xu, Z., Rodene, E., Yang, J., and Schnable, J.C.
(2020). Semantic segmentation of sorghum using hyperspectral data
identifies genetic associations. Plant Phenomics, 4216373.

110. Singh, A., Ganapathysubramanian, B., Singh, A.K., and Sarkar, S. (2016).
Machine learning for high-throughput stress phenotyping in plants.
Trends Plant Sci. 21, 110–124.

111. Singh, A.K., Ganapathysubramanian, B., Sarkar, S., and Singh, A. (2018).
Deep learning for plant stress phenotyping: Trends and future perspec-
tives. Trends Plant Sci. 23, 883–898.

112. Araus, J.L., Kefauver, S.C., Zaman-Allah, M., Olsen, M.S., and Cairns,
J.E. (2018). Translating high-throughput phenotyping into genetic gain.
Trends Plant Sci. 23, 451–466.

113. Liang, Z., Pandey, P., Stoerger, V., Xu, Y., Qiu, Y., Ge, Y., and Schnable,
J.C. (2018). Conventional and hyperspectral time-series imaging of
maize lines widely used in field trials. Gigascience 7, 1–11.

114. Gage, J.L., de Leon, N., and Clayton, M.K. (2018). Comparing genome-
wide association study results from different measurements of an under-
lying phenotype. G3 (Bethesda) 8, 3715–3722.

115. Perez, L., andWang, J. (2017). The effectiveness of data augmentation in
image classification using deep learning. arXiv, 1712.04621.

http://refhub.elsevier.com/S2590-3322(21)00110-X/sref72
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref72
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref72
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref72
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref73
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref73
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref73
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref73
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref74
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref74
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref74
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref74
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref75
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref75
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref75
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref76
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref76
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref76
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref76
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref77
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref77
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref77
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref78
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref78
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref79
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref79
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref80
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref80
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref80
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref81
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref81
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref81
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref82
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref82
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref83
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref83
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref83
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref83
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref84
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref84
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref84
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref84
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref85
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref85
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref85
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref86
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref86
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref86
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref86
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref86
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref87
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref87
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref87
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref88
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref88
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref88
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref88
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref89
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref89
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref89
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref89
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref90
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref90
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref90
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref90
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref91
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref91
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref91
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref91
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref91
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref91
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref92
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref92
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref92
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref92
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref93
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref93
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref93
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref93
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref94
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref94
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref94
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref95
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref95
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref95
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref96
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref96
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref96
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref96
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref97
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref97
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref97
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref97
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref98
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref98
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref98
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref98
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref99
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref99
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref99
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref99
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref100
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref100
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref100
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref100
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref101
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref101
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref101
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref102
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref102
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref102
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref103
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref103
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref103
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref104
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref104
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref104
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref105
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref105
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref105
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref106
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref106
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref106
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref107
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref107
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref107
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref107
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref108
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref108
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref108
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref108
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref109
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref109
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref109
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref110
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref110
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref110
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref111
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref111
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref111
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref112
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref112
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref112
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref113
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref113
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref113
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref114
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref114
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref114
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref115
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref115


ll
OPEN ACCESSPerspective
116. Araus, J.L., and Cairns, J.E. (2014). Field high-throughput phenotyping:
the new crop breeding frontier. Trends Plant Sci. 19, 52–61.

117. Jiang, Y., and Li, C. (2020). Convolutional neural networks for image-
based high-throughput plant phenotyping: a review. Plant Phenomics
2020, 4152816.

118. Miao, C., Xu, Y., Liu, S., Schnable, P.S., and Schnable, J.C. (2020).
Increased power and accuracy of causal locus identification in time se-
ries genome-wide association in sorghum. Plant Physiol. 183,
1898–1909.

119. Yang, C.J., Samayoa, L.F., Bradbury, P.J., Olukolu, B.A., Xue, W., York,
A.M., Tuholski, M.R., Wang, W., Daskalska, L.L., Neumeyer, M.A., et al.
(2019). The genetic architecture of teosinte catalyzed and constrained
maize domestication. Proc. Natl. Acad. Sci. U S A 116, 5643–5652.

120. Allard, R.W., and Bradshaw, A.D. (1964). Implications of genotype-envi-
ronmental interactions in applied plant breeding. Crop Sci. 4, 503–508.

121. Bao, Y., Zarecor, S., Shah, D., Tuel, T., Campbell, D.A., Chapman, A.V.E.,
Imberti, D., Kiekhaefer, D., Imberti, H., L€ubberstedt, T., et al. (2019). As-
sessing plant performance in the Enviratron. Plant Methods 15, 117.
122. Bernardo, R. (2010). Breeding for Quantitative Traits in Plants, Second
Edition (Stemma Press).

123. Varshney, R.K., Singh, V.K., Hickey, J.M., Xun, X., Marshall, D.F., Wang,
J., Edwards, D., and Ribaut, J.-M. (2016). Analytical and decision support
tools for genomics-assisted breeding. Trends Plant Sci. 21, 354–363.

124. Khoury, C.K., Bjorkman, A.D., Dempewolf, H., Ramirez-Villegas, J.,
Guarino, L., Jarvis, A., Rieseberg, L.H., and Struik, P.C. (2014). Increasing
homogeneity in global food supplies and the implications for food secu-
rity. Proc. Natl. Acad. Sci. U S A 111, 4001–4006.

125. Renard, D., and Tilman, D. (2019). National food production stabilized by
crop diversity. Nature 571, 257–260.

126. Baro, M., and Deubel, T.F. (2006). Persistent hunger: perspectives on
vulnerability, famine, and food security in Sub-Saharan Africa. Annu.
Rev. Anthropol. 35, 521–538.

127. Maxwell, D., Khalif, A., Hailey, P., and Checchi, F. (2020). Determining
famine: multi-dimensional analysis for the twenty-first century. Food Pol-
icy 92, 101832.
One Earth 4, March 19, 2021 383

http://refhub.elsevier.com/S2590-3322(21)00110-X/sref116
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref116
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref117
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref117
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref117
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref118
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref118
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref118
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref118
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref119
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref119
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref119
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref119
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref120
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref120
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref121
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref121
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref121
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref121
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref122
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref122
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref123
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref123
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref123
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref124
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref124
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref124
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref124
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref125
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref125
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref126
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref126
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref126
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref127
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref127
http://refhub.elsevier.com/S2590-3322(21)00110-X/sref127

	Interdisciplinary strategies to enable data-driven plant breeding in a changing climate
	Historical models for yield prediction
	Nested models for predictive plant breeding
	Improve modeling of physiological processes
	Introduce precise measurements of current and novel physiological parameters by high-throughput phenotyping
	Improve modeling of extreme weather events
	Improve modeling of edaphic factors
	Integrate genetic variation for key crop model input parameters
	Genotyping
	Phenotyping
	Envirotyping
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Regression analysis
	Acknowledgments
	Author contributions
	Declaration of interests
	References


