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ABSTRACT New genotyping technologies have made large amounts of genotypic data available for plant
breeders to use in their efforts to accelerate the rate of genetic gain. Genomic selection (GS) techniques
allow breeders to use genotypic data to identify and select, for example, plants predicted to exhibit drought
tolerance, thereby saving expensive and limited field-testing resources relative to phenotyping all plants
within a population. A major limitation of existing GS approaches is the trade-off between short-term genetic
gain and long-term potential. Some approaches focus on achieving short-term genetic gain at the cost of
reduced genetic diversity necessary for long-term gains. In contrast, others compromise short-term progress
to preserve long-term potential without consideration of the time and resources required to achieve it. Our
contribution is to define a new “look-ahead” metric for assessing selection decisions, which evaluates the
probability of achieving high genetic gains by a specific time with limited resources. Moreover, we propose a
heuristic algorithm to identify optimal selection decisions that maximize the look-ahead metric. Simulation
results demonstrate that look-ahead selection outperforms other published selection methods.
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1. INTRODUCTION

Feeding the world’s growing population remains a significant
challenge. Advances in plant breeding have been instrumental
in improving agricultural output. Classical plant breeding pro-
grams rely on the phenotyping of progenies in field trials to iden-
tify superior individuals. The number of individuals that can be
phenotyped is resource limited (Rincent et al. 2017), which limits
genetic gain. Genomic selection (GS) refers to using a set of mark-
ers distributed across the genome to estimate the breeding value
of selection candidates for quantitative traits (Goddard 2009). GS
makes it possible to predict the performance of unphenotyped indi-
viduals from readily available genotyping data (Rincent et al. 2017;
Meuwissen et al. 2001). Genomic Estimated Breeding Value (GEBV)
of individual plants (or animals) has been widely adopted as the
selection criteria; it selects individuals based on the sum of their
estimated marker effects (Meuwissen et al. 2001). This approach
has been widely adopted in GS practice due to its effectiveness in
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achieving short-term genetic improvements. More recently, two
methods have been proposed to improve conventional GS (CGS):
the optimal haploid value (OHV) (Daetwyler et al. 2015) and the
optimal population value (OPV) (Goiffon et al. 2017). Simulation
experiments and some empirical studies have shown that CGS se-
lection results in rapid genetic gains (Hayes et al. 2009; Lorenzana
and Bernardo 2009; VanRaden et al. 2009; Jannink 2010). However,
CGS focuses on one or two cycles of selection and does not guar-
antee long-term gain (Sonesson et al. 2012; Lin et al. 2017; Gorjanc
et al. 2018; Akdemir et al. 2018). The OHV method, calculates the
GEBV of the best possible doubled haploid (DH) derived from an
individual (Daetwyler et al. 2015). This method focuses selection
on haplotypes and optimizes the breeding program toward the
end goal of generating an elite fixed line (Daetwyler et al. 2015).
Simulation studies have shown that OHV selection results in more
genetic gain and diversity as compared to CGS (Daetwyler et al.
2015). CGS and OHV are truncation selection approaches in that
they rank individuals and select the top fraction of the population.
In contrast, OPV is a group-based selection strategy. Specifically,
OPV selects the best group of individuals based on their interactive
effects and calculates the GEBV of the best possible progeny from
this group produced after an unlimited number of generations,
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which may require a large amount of time and resources to achieve
(Goiffon et al. 2017). In this paper, we extend OPV by again se-
lecting groups of individuals as a unit, but propose an innovative
method for selecting groups, “look-ahead selection” (LAS). This
new selection method can improve genetic gain by maximizing
the expected GEBV of the best offspring in the terminal genera-
tion. It makes the optimal trade-off between short-term gain and
long-term potential to achieve the highest genetic gain within a
specified time.

2. MATERIALS AND METHODS

2.1 Generic formulation for GS methods
In this section, we present a generic formulation for existing GS
methods namely, CGS, OHV, OPV, and the new selection method,
LAS. Equations (1), (2), and (3) show this genetic optimization
formulation.

maxx f (x) (1)

such that
N

∑
n=1

xn = S (2)

xn ∈ {0, 1}, n ∈ {1, ..., N} (3)

Here,

• N is the number of individuals in the population.
• xn is a binary decision variable that shows whether individual

n is selected (xn = 1) or not (xn = 0).
• S is the number of individuals that are to be selected out of

the current population.

It should be observed that the only difference among the three
previous methods is in their objective functions as they aim to
maximize different objectives. The objective function of the opti-
mization problem, f (x) is formulated as f (x)CGS, f (x)OHV , and
f (x)OPV in equations (4), (5), and (6) respectively.

2.1.1 Conventional genomic selection: Meuwissen et al. (2001)
proposed to evaluate an individual as a breeding parent by its
genomic estimated breeding value (GEBV), which is the sum of all
marker effects across the entire genome, as defined in equation (4).
The CGS method selects individuals with the highest GEBVs.

f (x)CGS =
N

∑
n=1

L

∑
l=1

2

∑
m=1

Gl,m,nβl xn. (4)

Here, the notations are defined as follow:

• L: The number of marker loci.
• Gl,m,n ∈ {0, 1}, ∀l ∈ {1, 2, ..., L}, ∀m ∈ {1, 2} and ∀n ∈
{1, 2, ..., N} : The genotypic information of locus l from chro-
mosome m of individual n, with 1 and 0 representing the
major and minor allele, respectively.

• βl : The normalized effect of the major allele at locus l, with
that for the minor allele being 0.

• M: The ploidy of the plants. We use diploid species (M=2) as
an example in this paper.

To maximize long-term response, the weighted genomic selec-
tion (Goddard 2009; Jannink 2010) was proposed as a variation
of the CGS method by emphasizing the preservation of rare fa-
vorable alleles. It replaced the allele effect βl in equation (4) with

βl√
max(wl ,1/N)

, where wl is the frequency of favorable alleles at

locus l among all individuals in the population. As such, this

variation gives a higher weight to low-frequency favorable alle-
les. Notice that the denominator

√
max(wl , 1/N) is equal to

√
wl

except for wl = 0 when Gl,m,n = 0 for all m and n.

2.1.2 Optimal haploid value: More than a decade after the CGS
metohd, OHV was proposed to combine the creation of doubled
haploids with GS methods and evaluates the potential of produc-
ing elite doubled haploids (Daetwyler et al. 2015). Equation (5)
shows the objective function for OHV selection. This method
selects individuals with the highest OHVs.

f (x)OHV = 2
N

∑
n=1

B

∑
b=1

max
m∈{1,2}

∑
l∈H(b)

Gl,m,nβl xn. (5)

Here, segments of adjacent markers are clustered into haplotypes,
which are defined as follows:

• B: The number of haplotype blocks per chromosome.
• H(b), ∀b ∈ {1, ..., B}: The set of marker loci that belong to

haplotype block b.

The OHV of an individual is the GEBV of its best possible
DH progeny. Recombination events are assumed to be possible
between haplotypes but not within them. This assumption reduces
the computational effort of the algorithm.

What also makes CGS and OHV computationally efficient is
the fact that they are both truncation selection methods, which
assumes that the contribution of breeding parents are separable
and additive. Mathematically, the summation operator ∑N

n=1 in
equation (4) and (5) suggests that the maximization of the objective
functions f (x)CGS or f (x)OHV can be easily achieved by evaluating
each individual n separately and setting xn = 1 for the ones with
the highest GEBVs or OHVs.

Compared with CGS, OHV represents an important shift of the
selection objective from maximizing genetic achievement of the
parents to that of their progeny.

2.1.3 Optimal population value: OPV selection is an extension to
OHV which evaluates the breeding merit of a set of individuals
instead of evaluating the breeding value of a single individual
(Goiffon et al. 2017). The OPV of breeding population S is the
GEBV of the best possible progeny produced after an unlimited
number of generations. The objective function for the OPV method
is defined as follows:

f (x)OPV = 2
B

∑
b=1

max
n∈{1,...,N}

max
m∈{1,2}

∑
l∈H(b)

Gl,m,nβl xn. (6)

OPV represents another important shift of the selection objec-
tive from individual-based truncation selection to group-based
selection. The contribution of a breeding parent is evaluated based
on not only the favorable alleles that it carries but also the favor-
able alleles that it carries but are missing in other selected breeding
parents. A limitation of OPV is that the objective function f (x)OPV

is a lot harder to optimize, since it is no longer separable with
respect to x. As a result, heuristic algorithms were used to identify
good but not necessarily optimal selections.

2.2 Potential improvements
The success of CGS has been demonstrated in numerous simulation
and field experiments, especially in achieving short-term genetic
gains in both plant and animal breeding (Meuwissen 1997; Rosvall
1999; Hayes et al. 2002; Ullrich 2007; Hayes et al. 2009; Lorenzana
and Bernardo 2009; VanRaden et al. 2009; Jannink et al. 2010; Mujibi
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et al. 2011; Nakaya and Isobe 2012; Hallatschek and Geyrhofer
2015). OHV and OPV were proposed as extensions of CGS to
improve long-term genetic gains, which have been shown to be
effective in simulation studies. Herein, we identify three areas in
genomic selection that can be made more efficient and present a
new genomic selection method that attempts to address each of
these three areas.

First, time management. For a given population of individuals,
the optimal selection decision should depend on whether the dead-
line of the breeding project is in the near future or far down the
road. However, none of the aforementioned three methods take
deadlines into consideration.

Second, mating strategy. All three methods focus on selecting
breeding parents without explicitly indicating how they should
be mated in pairs, but several studies have observed that different
mating decisions may affect genetic gain (Toro and Varona 2010;
Kinghorn 2011; Sun et al. 2013; Akdemir and Sánchez 2016; Liu
et al. 2017; Wang et al. 2018).

Third, resource allocation. Intuitively, making more crosses and
producing more progenies leads to a higher chance of creating
outstanding individuals from the progeny population, but this
also requires more resources. Allocating a fixed total budget over
a period of time to achieve the best final outcome is therefore a
strategic decision that needs to be optimized (Lorenz 2013).

2.3 Look-ahead selection
The cornerstone of the LAS method is a new definition of the ob-
jective function, f LAS(x, y, r, T− t), that reflects what truly matters
in genomic selection. The input of this function includes selected
breeding parents (x), mating decisions (y), recombination frequen-
cies (r), and remaining number of generations (T− t, the difference
between the current generation number t and the deadline T). The
former two input terms are decision variables that need to be opti-
mized by the model, whereas the latter two are parameters that the
model needs to take into account when searching for the optimal
solution. We define f LAS as the expected GEBV of the best offspring
in the terminal generation. In comparison, f CGS can be interpreted
as the genetic achievement of the breeding parents measured in
terms of GEBV; and f OHV and f OPV represent the best possible
progeny that can be produced by, respectively, self pollination and
cross pollination, both assuming unlimited time and resources.
The models for these three methods only differ in the objective
functions but share the same constraints (2) and (3), whereas the
LAS model requires additional constraints. The LAS method can
be formulated as follows.

max
x,y

f LAS(x, y, r, T − t) (7)

such that Constraints (2) and (3) (8)

xn = ∑N
j=1 yn,j ∀n ∈ {1, ..., N} (9)

yi,j ∈ {0, 1} ∀i, j ∈ {1, ..., N} (10)

The new variables and parameters are defined as follows.

• yi,j: A binary variable that shows whether individual i is
mated with individual j (yi,j = 1) or not (yi,j = 0).

• r ∈ [0, 0.5]L−1: The recombination frequency vector.

The remainder of this section will explain how to numerically
evaluate the objective function f LAS(x, y, r, T − t) for any given
solution (x, y), how to search for the optimal (or close to optimal)
solution (x∗, y∗) that achieves the maximal value in the objective
function, and how to allocate resources to improve the rate of
genetic gains.

2.3.1 Evaluation of the objective function f LAS: The exact evalua-
tion of the objective function f LAS is challenging both computation-
ally and analytically due to uncertain recombination events over
T − t generations as well as the selection, mating, and resource
allocation decisions that will be made therein. To overcome this
challenge, we designed a novel simulation method that provides a
computationally tractable yet reasonable approximation of the true
objective function. Figure 1 illustrates the look-ahead simulation
that is based on two simplifying assumptions.

Assumption 1: The selected pairs of breeding parents will each
produce one progeny in generation t + 1.
Assumption 2: All progenies from generation t + 1 to T − 1 were
crossed with each other (including selfing) in the same generation,
each producing one progeny.

As such, the objective function f LAS can be approximated by
taking a random sample of the population in generation T of the
look-ahead simulation and calculating the highest GEBV of all
individuals.

Figure 1 The look-ahead simulation.

The following theorem defines the distribution of the progenies
in the final generation T, which allows efficient evaluation of the
approximated objective function.

Theorem 1. Let G ∈ {0, 1}L×2×S denote the genotype of a pop-
ulation in generation t with an even number, S, of individuals.
Suppose all individuals with odd indices, {1, 3, ..., S− 1}, are re-
spectively mated with the next individuals, {2, 4, ..., S}. These
individuals are mated according to Assumptions 1 and 2. Let
g ∈ {0, 1}L denote a random gamete produced by breeding par-
ents in meiosis of the (T − 1)st generation. The distribution of g
can be described by the following equations (11) and (12)

P(g1 = G1,m,i) =
1

2S
, ∀i ∈ {1, 2, ..., S}, ∀m ∈ {1, 2}. (11)
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P(gl+1 = Gl+1,m1,i1 |gl = Gl,m0,i0 ) (12)

=



(1− rl+1)
2(1− Rl+1), if i0 = i1 and m0 = m1

rl+1(1− rl+1)(1− Rl+1), if i0 = i1 and m0 6= m1

1
2 rl+1(1− Rl+1), if

⌈
i0

2

⌉
=

⌈
i1

2

⌉
Rl+1

2(S− 2)
, if

⌈
i0

2

⌉
6=
⌈

i1

2

⌉
,

∀l ∈ {1, ..., L− 1}, ∀i0, i1 ∈ {1, 2, ..., S}, ∀m0, m1 ∈ {1, 2}.

Here, r ∈ [0, 0.5]L−1 is the given vector of recombination frequen-
cies and Rl is the recombination frequency between allele l and
allele l + 1 between generations t + 2 and T for all l ∈ {1, ..., L− 1},
which can be derived as:

Rl =
(S− 2)

[
1− (1− rl)

T−t]
S

. (13)

The proof for equation (13) is provided in the appendix .

2.3.2 Optimization of the objective function f LAS: Unlike trunca-
tion selection methods CGS and OHV, which are easy to optimize
due to separable objective functions with respect to the selection
decision x, the OPV and LAS methods require the optimization of
the selected breeding parents’ synergistic contribution. A heuristic
algorithm was designed to optimize f OPV in Goiffon et al. (2017),
where a randomly selected set of breeding parents is iteratively
updated to maximize the f OPV function through pairwise swaps
between a selected individual and every other unselected one. A
similar heuristic can also be applied to optimize the f LAS function
with two minor points of caution. First, OPV only selects individu-
als, while in contrast, LAS also pairs them up, so the orders of the
selected individuals in generation t must be preserved to reflect
the mating strategy. Second, constraint (2) ensures fair comparison
between the four methods by specifying the number of selected
individuals. This constraint helps CGS and OHV by maintaining
genetic diversity. On the other hand, maintaining genetic diversity
is a built-in feature in OPV and LAS methods. Hence, the decision
maker can choose to relax constraint (2) on OPV or LAS methods
in cases that selfing or polygamous crosses are beneficial.

2.3.3 Heuristic strategy for resource allocation: There are two
dimensions of resource allocation in genomic selection (beyond
genomic prediction of allele effects): allocation of total budget
across a number of generations and allocation of the given budget
for a specific generation over multiple crosses. In this paper, we
assumed equal temporal allocation of the total budget over the
breeding duration and hence a fixed number of crosses and pop-
ulation size for each generation. The proposed heuristic strategy
attempted to accelerate the rate of genetic gain by strategically
varying the numbers of progenies produced from different crosses
based on the genetic diversity of the breeding parents. Let n1 and
n2 be the indices of the two breeding parents (that have been se-
lected and paired according to the LAS method) in the current
generation with G representing its genotype, then the genetic di-
versity is defined as

∑
l

 max
n∈{n1,n2}
m∈{1,2}

Gl,m,nβl − min
n∈{n1,n2}
m∈{1,2}

Gl,m,nβl

 , (14)

which is the aggregated range of GEBVs over all haplotype
blocks. Given a fixed budget for the current generation, the num-
bers of progenies produced from multiple crosses are set to be
proportional to the genetic diversity measures of the breeding par-
ents. The rationale for this heuristic is to spend more resources on
those crosses that have wider predicted phenotypic distributions
and thus higher probabilities of producing outstanding progenies.

2.4 Data availability
All data including phased single nucleotide polymorphisms (SNPs)
for maize inbred lines from the Shoot Apical Meristem (SAM)
Diversity Panel and genetic maps are available at Figshare. Here is
the DOI: 10.25380/iastate.8023580.

3. RESULTS

3.1 Simulation setting
In this paper, the genotypic data (Gl,m,n), marker effects (βl) and
recombination rates (rl) are based on Goiffon et al. (2017). The geno-
typic data contains genotypes of 369 maize inbred lines consisting
of L = 1, 406, 757 SNPs distributed across ten maize chromosomes.
Marker effects were estimated on the basis of 369 shoot apical
meristem phenotypes (Leiboff et al. 2015) using the BayesB model
(Meuwissen et al. 2001). Similar to Goiffon et al. (2017), we assumed
that marker effects were known and that errors in marker effects
have an equal effect on all selection methods. The genetic map
developed from maize nested association mapping (NAM) pop-
ulation is used for estimating recombination rates (Yu et al. 2008).
To facilitate comparisons, genetic data were scaled such that the
maximum potential of the initial breeding population is 100.

The same simulation process (shown in Figure 2) as (Goiffon
et al. 2017) was used to compare the four methods in our study.
Each of the components in Figure 2 is explained as follows:

Figure 2 The simulation diagram, adopted from Goiffon et al.
(2017).

• The initial population start point: In plant breeding, the ge-
nomic selection process starts with an initial population of
individuals. The genotypes and marker effects are given at
this point. In each simulation run, 200 individuals were se-
lected randomly from the 369 maize inbred lines to make the
initial population. Furthermore, the same set of 200 individu-
als were used as the initial population for all methods to make
comparisons consistent.
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• The selection step: All four methods were used to make selec-
tion decisions in this step, including mating strategies, num-
ber of crosses to make (nc) and number of progenies per cross
(np). In particular,

For CGS: S = 20 individuals with the highest GEBVs were
selected and randomly mated to make nc = 10 crosses, each
producing np = 20 progenies, maintaining a constant popula-
tion size of 200.

For OHV: S = 20 individuals with the highest OHVs were
selected and randomly mated to make nc = 10 crosses, each
producing np = 20 progenies, maintaining a constant popula-
tion size of 200. The same values of B = 12 and F = 70% as
Goiffon et al. (2017) were used in our simulation where F is
the percentage of individuals with the lowest GEBVs removed
before optimizing the selected population.

For OPV: S = 20 individuals with the highest OPVs were
selected and randomly mated to make nc = 10 crosses, each
producing np = 20 progenies, maintaining a constant popu-
lation size of 200. The same values of B = 1 and F = 40% as
Goiffon et al. (2017) were used in our simulation.

For LAS: S = 20 individuals were selected and mated accord-
ing to the look-ahead algorithm to make nc = 10 crosses. The
number of progenies for each cross was determined by the
heuristic strategy described in Section 2.3.3 with the constraint
that the total number of progenies remains 200.

• The reproduction step: The selected individuals were crossed
to make the breeding population for the next generation. A
random progeny inherits the genetic information from its
breeding parents according to inheritance distribution defined
in Han et al. (2017). Let P ∈ {0, 1}L×2 denote the genotype
of a random progeny produced from crossing individuals n1
and n2. Then P is determined as follow:

Pi,j = Gi,J j
i +1,nj

, ∀i ∈ {1, ..., L}, j ∈ {1, 2},

where

J1 =

{
0, w.p. 0.5
1, w.p. 0.5

, (15)

Ji =

{
Ji−1 w.p. 1− ri−1

1− Ji−1 w.p. ri−1
, ∀i ∈ {2, ..., L}. (16)

Here, “w.p.” stands for “with probability”.

• The t >= T? condition: The breeding cycle repeats itself until
generation T, a predetermined deadline.

• The final population end point: After the terminal generation,
the population will be assessed to determine its genetic im-
provement over the initial population.

3.2 Simulation results
One thousand independent simulation repetitions were performed
for each of the four selection approaches. Simulations were con-
ducted on a computer with 256GB RAM and a processor with
the following specifications: Intel(R) Xeon(R) CPU E5-4650 0
@2.70GHz 2.70GHz (2 processors). The computation time required
for one simulation (including 4 methods) was 6248 seconds. Hence,
it takes almost 1735 Hours (72 days) to conduct 1000 simulations.

Ten different simulations have ran in parallel to reduce the CPU
calender time to 7 days. The LAS method is modestly more compu-
tationally intensive. LAS requires approximately two times more
computational time than the other three methods. Major results
are summarized as follows.

Genetic gains over ten generations
Figure 3 shows the average cumulative genetic gains over ten gen-
erations. We define the cumulative genetic gain as the difference
between the mean GEBV of the current population and that of
the initial population. Because this figure shows genetic gains for
each of the four methods averaged across 1,000 simulation rep-
etitions, the comparison reflects their different performances in
general. CGS achieved a high rate of genetic gain in the first three
generations before gradually reaching a plateau. OHV maintained
a relatively high rate of genetic gain throughout ten generations
due to its emphasis on the progenies rather than the parents. OPV
managed to achieve an even higher genetic gain by the terminal
generation at the cost of lower rate of genetic gains in early gen-
erations, which is attribute to its group-based selection strategy
that aims to achieve long-term genetic gains by combining desir-
able alleles from multiple breeding parents. LAS demonstrated a
deadline-conscious strategy that patiently stays as an underdog
in early generations while accumulating desirable alleles but ulti-
mately surpasses all other methods in the final generation. These
results suggested that LAS is capable of making a trade-off be-
tween achieving short-term genetic gain and preserving long-term
growth potential.

0 1 2 3 4 5 6 7 8 9 10

Generation

0

5

10

15

20

25

G
en

et
ic

 G
ai

n

LAS
OPV
OHV
CGS

Figure 3 Cumulative genetic gains over 10 generations for four
GS methods.

Genetic diversity over ten generations
Figure 4 displays the average genetic diversity (defined in equa-
tion (14)) over ten generations. The genetic diversity of the two
truncation selection methods, CGS and OHV, dropped to about
35% of its initial value in the first two generations, which further
deteriorated to about 15% in generation ten. In contrast, the two
group-based selection methods, OPV and LAS, maintained ge-
netic diversity at about 65% and 40% in generations two and ten,
respectively. These results demonstrated the advantages of group-
based selection methods over truncation-based methods in terms
of preserving long-term genetic diversity.
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Figure 4 Genetic diversity over 10 generations for four GS meth-
ods.

Genetic gains with varying deadlines
LAS is the only method that adjusts selection decisions based
on the user-defined deadline. Figure 5 shows the performance
of LAS with varying deadlines from T = 1 to T = 10. In all ten
cases, LAS used a similar strategy to patiently accumulate desirable
alleles in early generations and make big leaps in the final two
generations. As a result, LAS outperformed all other methods
for all tested deadlines. The other three methods make the same
selection decisions and thus result in the same performance under
different deadlines.
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Figure 5 Genetic gains with varying deadlines from T = 1 to T =
10. LAS adjusts selection decisions based on the user-defined
deadline whereas other three methods always make the same
selection decisions.

Variable performance across different simulation repetitions
The average values and standard deviations (among the 1,000
simulation repetitions) for population minimum, mean, and maxi-

mum in the 10th generation are summarized in Table 1.
Figure 6 compares the cumulative distribution functions (CDFs)

of the population maximum in generation 10. Here, the horizon-
tal axis shows the GEBV of an individual (representing genetic
gains) whereas the vertical axis is the percentile of the simulation
repetitions. By definition, the 1st percentile is one of the worst
performances within the 1,000 simulation repetitions, the 99th per-
centile is one of the best, and the 50th percentile is the median
value. As such, the further towards the right and bottom direc-
tions of the figure a CDF curves, the better performance a method
has. The figure shows the improvements of different methods from
CGS to LAS. In particular, LAS-X is a reduced version of LAS using
the same resource allocation strategy with all previous methods
(producing the same number of progenies from each cross), rather
than using the heuristic strategy for resource allocation described
in Section 2.3.3. These results demonstrated the effectiveness of
LAS in making selection, mating, and resource allocation decisions.
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Figure 6 CDFs of population maximum, here LAS-X is the modi-
fied LAS method without resource allocation.

Behavior of LAS in the final two generations
LAS has an interesting behavior in the final two generations when
it makes big leaps in genetic gain (Figures 3 and 5). This happens
because LAS accumulates desirable alleles in the early generations
to utilize in the final generations.

Figure 7 presents histograms of population GEBVs over time for
one sample simulation using the LAS method. The yellow triangles
show the GEBV of selected breeding parents from the population
in each generation. This demonstrates how the breeding value
rankings of the individuals selected by LAS change by generation.
Note that in the last two generations LAS selects individuals with
high GEBVs. This explains the behavior of LAS in the final two
generations.

4. CONCLUSIONS

Genomic selection has been instrumental in improving the effi-
ciency of plant breeding. In this study, we introduced a new se-
lection method, LAS, which has the potential to further improve
the efficiency of breeding given limited resources and specific user-
defined project duration.
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n Table 1 Average values and standard deviations (among the 1,000 simulation repetitions) for population minimum, mean, and max-
imum in the 10th generation for four selection methods.

Method Min Mean Max

CGS 54.88± 3.20 55.06± 3.23 55.24± 3.26

OHV 58.31± 4.27 58.95± 3.87 59.48± 3.84

OPV 57.56± 3.73 60.17± 3.97 62.16± 4.68

LAS 56.58± 3.97 61.53± 3.83 64.69± 4.25
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Figure 7 A sample simulation result using the LAS method pre-
senting histograms of population GEBVs over time. Here, the
red curve is the mean of population GEBVs and the boundaries
of white and gray areas are the upper and lower selection lim-
its. For a given generation, the upper selection limit shows the
maximum potential of population in terms of GEBV values and
similarly the lower selection limit shows the minimum potential
of the population. The maximum, mean and minimum GEBVs
are respectively 67.64, 64.69, and 60.18 in the final generation.

Unlike previous methods which try to maximize the genetic
achievement of breeding parents or the best possible progeny with-
out considering time and resource constraints, LAS is maximizing
what exactly matters in a GS problem by aiming at the right objec-
tive. The objective of LAS is to maximize the expected GEBV of the
best offspring in the terminal generation given a limited amount
of resources. As such, this method is much more computationally
challenging than previous ones, due to multiple complex factors
such as recombination frequencies, mating strategy, time manage-
ment, and resource allocation that are explicitly accounted for. To
deal with these challenges, we designed a simulation optimization
algorithm that estimates and maximizes the LAS objective function
by exploring the selection and mating solution space efficiently.

LAS makes three major contributions to the literature on ge-
nomic selection. First, LAS is deadline sensitive. Selection deci-
sions adjust to the project duration to make a trade-off between
achieving short-term genetic gains and maintaining genetic diver-
sity long-term. Second, LAS optimizes both selection and mating
strategies. It recognizes the importance of mating strategies and as-
signs selected individuals into pairs of breeding parents to achieve
further genetic gains. Third, LAS involves resource allocation deci-
sions. Rather than producing the same number of progenies from
each cross, it allows breeding parents with higher genetic diversity
to produce more progenies to increase the chance of producing

high performers.
LAS was compared with previous genomic selection methods

in a comprehensive simulation study using empirical data from a
population of inbred maize lines. Computational results demon-
strated the improvements of LAS over other methods in three
perspectives: (1) LAS achieved the highest genetic gain by the
deadline of the breeding project, which varied from one generation
to ten generations. (2) LAS preserved the highest level of genetic
diversity at the end of the breeding project. (3) LAS outperformed
all other methods in almost all percentiles in the 1,000 simulation
repetitions.

Future research is needed to address the limitations of the LAS
method. The first assumption described in Section 2.3.1 is allow-
ing only one progeny to be produced from the selected pairs of
breeding parents in generation t + 1 and the second assumption
is allowing the crosses to be made within the same generation
each producing one progeny from generation t + 1 to T− 1. These
two assumptions were made to simplify the computational re-
quirement of estimating the objective function, which inevitably
reduced its accuracy. Moreover, future studies can explore more
comprehensive comparisons by performing simulations by: 1. us-
ing other methods for estimating marker effects such as GBLUP
and ridge regression; 2. considering populations with different LD
structures; and 3. applying different resource allocation strategies.

APPENDIX: PROOF FOR THEOREM 1

This appendix proves theorem 1 through an example to provide
a more insightful description for four different possibilities of
recombination. Let’s assume we start with three pairs of breeding
parents (S=6). We represent the genotypic information of these
individuals with the following matrices:

pair one:


G1,1,1 G1,2,1

G2,1,1 G2,2,1
...

...

GL,1,1 GL,2,1

×


G1,1,2 G1,2,2

G2,1,2 G2,2,2

...
...

GL,1,2 GL,2,2



pair two:


G1,1,3 G1,2,3

G2,1,3 G2,2,3

...
...

GL,1,3 GL,2,3

×


G1,1,4 G1,2,4

G2,1,4 G2,2,4
...

...

GL,1,4 GL,2,4
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pair three:


G1,1,5 G1,2,5

G2,1,5 G2,2,5

...
...

GL,1,5 GL,2,5

×


G1,1,6 G1,2,6

G2,1,6 G2,2,6

...
...

GL,1,6 GL,2,6



The individuals in each pair are crossed to produce one progeny.
The resulting progenies are then randomly mated for T− t− 1 gen-
erations. g ∈ {0, 1}L is the random gamete produced by breeding
parents in meiosis of the (T − 1)st generation. From equation (12)
we see that four possibilities exist for recombination. Here, we
illustrate those four cases with color coding.

Proof. We divide the process into two phases: Phase 1: generation 0
until 2 and Phase 2: generation 2 until T. Let h ∈ {0, 1}L denote the
genotype of a specific gamete produced in meiosis by a progeny of
a specific pair of breeding parents from the breeding population.
This specific gamete contains the allele Gl,m0,i0 that is passed on to
the gamete g at locus l, i.e., hl = gl = Gl,m0,i0 . We know that such
a gamete uniquely exists because of the way the two phases are
defined. The four cases are as follow:
Case 1: No recombination happens (g2 comes from the same chro-
mosome as g1). 

g1

g2

...

gL

 =


G1,1,1

G2,1,1
...

GL,m,s


According to equation (12), when i0 = i1 and m0 = m1, we

have:

P(gl+1 = Gl+1,m1,i1 |gl = Gl,m0,i0 ) = (1− rl+1)
2(1− Rl+1) (17)

∀l ∈ {1, ..., L− 1}, ∀i0, i1 ∈ {1, 2, ..., S}, ∀m0, m1 ∈ {1, 2}.

Using this definition equation (17) can be calculated as follow:

P(gl+1 = Gl+1,m1,i1 |gl = Gl,m0,i0 ) (18)

= P(gl+1 = Gl+1,m0,i0 |gl = Gl,m0,i0 ) (19)

= P(hl+1 =Gl+1,m0,i0 , gl+1 =hl+1|hl = Gl,m0,i0 , gl =hl) (20)

= P(hl+1 = Gl+1,m0,i0 |hl = Gl,m0,i0 , gl = hl) (21)

·P(gl+1 = hl+1|hl = Gl,m0,i0 , gl = hl)

= P(hl+1 =Gl+1,m0,i0 |hl =Gl,m0,i0 )P(gl+1=hl+1|gl=hl) (22)

= (1− rl+1)
2(1− Rl+1) (23)

Equation (19) comes from the fact that i0 = i1 and m0 = m1.
Equation (20) is derived from equation (19) because of the way h
is defined. To find equation (21) from (20) independency is used.
Finally, equation (22) is derived from (21) due to the fact that
hl+1 = Gl+1,m0,i0 is independent from gl = hl and also gl+1 = hl+1
is independent from hl = Gl,m0,i0 .
Here, Rl is the recombination frequency between allele l and allele
l + 1, ∀l ∈ {1, ..., L− 1} after (T − t)− 2 number of generations
and is calculated as:

Rl = 1− P(gl+1 = hl+1|gl = hl) (24)

Proof.

R2
l = 0

Ri
l = 1−

(
(1− Ri−1

l )(1− rl) +
rl

S/2

)
∀i ∈ {3, 4, ..., τ}

Where rl is the lth recombination frequency for l ∈ {1, 2, ..., L− 1}
and S is number of breeding parents. From the above equations
we obtain:

Rl =
(S− 2)

(
1− (1− rl)

T−t)
S

(25)

This provides the proof for equation (13).

Case 2: Recombination happens within an individual (g2 is
coming from the other chromosome of the same individual where
g1 is coming from). 

g1

g2

...

gL

 =


G1,1,1

G2,2,1
...

GL,m,s


According to equation (12), when i0 = i1 and m0 6= m1, we

have:

P(gl+1 = Gl+1,m1,i1 |gl = Gl,m0,i0 ) = rl+1(1− rl+1)(1− Rl+1)
(26)

∀l ∈ {1, ..., L− 1}, ∀i0, i1 ∈ {1, 2, ..., S}, ∀m0, m1 ∈ {1, 2}.

Similarly, equation (26) can be calculated as follow:

P(gl+1 = Gl+1,m1,i1 |gl = Gl,m0,i0 ) (27)

=P(hl+1 =Gl+1,m1,i0 , gl+1 = hl+1|hl =Gl,m0,i0 , gl =hl) (28)

=P(hl+1 =Gl+1,m1,i0 |hl=Gl,m0,i0 )P(gl+1 =hl+1|gl =hl) (29)

=rl+1(1− rl+1)(1− Rl+1) (30)

Case 3: Recombination happens within the paired individual.
g1

g2

...

gL

 =


G1,1,1

G2,1,2
...

GL,m,s

 , or


g1

g2

...

gL

 =


G1,1,1

G2,2,2

...

GL,m,s


According to equation (12), when

⌈
i0

2

⌉
=

⌈
i1

2

⌉
, we have:

P(gl+1 = Gl+1,m1,i1 |gl = Gl,m0,i0 ) =
1
2

rl+1(1− Rl+1) (31)

∀l ∈ {1, ..., L− 1}, ∀i0, i1 ∈ {1, 2, ..., S}, ∀m0, m1 ∈ {1, 2}.

Similarly, equation (31) can be calculated as follow:

P(gl+1 = Gl+1,m1,i1 |gl = Gl,m0,i0 ) (32)

=P(hl+1 =Gl+1,m1,i1 , gl+1 =hl+1|hl =Gl,m0,i0 , gl =hl) (33)

=P(hl+1=Gl+1,m1,i1 |hl =Gl,m0,i0 )P(gl+1 =hl+1|gl =hl) (34)

=
1
2

rl+1(1− Rl+1) (35)

Case 4: This case considers all possible remaining recombina-
tion.
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g1

g2

...

gL

 =


G1,1,1

G2,1,3
...

GL,m,s

 , or


g1

g2

...

gL

 =


G1,1,1

G2,2,3

...

GL,m,s

 , or


g1

g2

...

gL

 =


G1,1,1

G2,1,4
...

GL,m,s

 , or · · · ,


g1

g2

...

gL

 =


G1,1,1

G2,2,6

...

GL,m,s



According to equation (12), when
⌈

i0

2

⌉
6=
⌈

i1

2

⌉
, we have:

P(gl+1 = Gl+1,m1,i1 |gl = Gl,m0,i0 ) =
Rl+1

2(S− 2)
(36)

∀l ∈ {1, ..., L− 1}, ∀i0, i1 ∈ {1, 2, ..., S}, ∀m0, m1 ∈ {1, 2}.

Similarly, equation (36) can be calculated as follow:

P(gl+1 = Gl+1,m1,i1 |gl = Gl,m0,i0 ) (37)

=P(hl+1 =Gl+1,m1,i1 , gl+1 =hl+1|hl =Gl,m0,i0 , gl =hl) (38)

=P(hl+1 =Gl+1,m1,i1 |hl =Gl,m0,i0 )P(gl+1 =hl+1|gl=hl) (39)

=
1
4
× Rl+1

S
2 − 1

(40)

=
Rl+1

2(S− 2)
(41)
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