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SUMMARY

Although approaches for performing genome-wide association studies (GWAS) are well developed, conven-

tional GWAS requires high-density genotyping of large numbers of individuals from a diversity panel. Here

we report a method for performing GWAS that does not require genotyping of large numbers of individuals.

Instead XP-GWAS (extreme-phenotype GWAS) relies on genotyping pools of individuals from a diversity

panel that have extreme phenotypes. This analysis measures allele frequencies in the extreme pools,

enabling discovery of associations between genetic variants and traits of interest. This method was evalu-

ated in maize (Zea mays) using the well-characterized kernel row number trait, which was selected to

enable comparisons between the results of XP-GWAS and conventional GWAS. An exome-sequencing strat-

egy was used to focus sequencing resources on genes and their flanking regions. A total of 0.94 million vari-

ants were identified and served as evaluation markers; comparisons among pools showed that 145 of these

variants were statistically associated with the kernel row number phenotype. These trait-associated variants

were significantly enriched in regions identified by conventional GWAS. XP-GWAS was able to resolve sev-

eral linked QTL and detect trait-associated variants within a single gene under a QTL peak. XP-GWAS is

expected to be particularly valuable for detecting genes or alleles responsible for quantitative variation in

species for which extensive genotyping resources are not available, such as wild progenitors of crops,

orphan crops, and other poorly characterized species such as those of ecological interest.

Keywords: extreme-phenotype genome-wide association study, exome-sequencing, trait-associated

variants, diversity panel, maize, kernel row number.

INTRODUCTION

Despite the development of quantitative trait loci (QTL)

mapping (Morton, 1955) and genome-wide association

studies (GWAS) (Klein et al., 2005), rapid and cost-effec-

tive identification of SNPs or genes associated with varia-

tion in complex traits remains challenging. Conventional

QTL mapping is typically performed on the basis of

newly occurring recombination events in the progeny of

bi-parental crosses. Typically, at most only two to four

alleles segregate in such crosses, limiting the number of

trait-associated loci that may be detected. In addition, the

limited number of recombination events usually results in

relatively large confidence intervals. GWAS looks for

associations using a greater fraction of the genetic diver-

sity within a species that contributes to the trait of inter-

est. When performed on large diversity panels, GWAS

provides higher-resolution mapping of trait-associated

variants (TAVs) because it exploits historical recombina-

tion events. However, one of the limitations of the
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existing QTL mapping and GWAS approaches is that they

require genotyping of large numbers of individuals,

which may be expensive for large populations, even

using recently developed cost-effective genotyping meth-

ods such as genotyping arrays (Steemers et al., 2006; Fu

et al., 2010) and genotyping-by-sequencing (Elshire et al.,

2011).

An alternative method for identification of TAVs is bulk

segregant analysis (BSA), which involves genotyping of

pools of individuals sorted by phenotype rather than

genotyping individuals within a segregating population or

a diversity panel (Michelmore et al., 1991). BSA may be

performed using any type of genetic marker that provides

a quantitative read-out that is correlated with allele fre-

quencies in the phenotypically distinct pools. New imple-

mentations of BSA have recently been reported that

exploit advances in genotyping technologies, especially

the development of next-generation sequencing (NGS).

For example, NGS-based BSA methods that rely on

whole-genome shotgun sequencing have been applied to

species with small genomes such as Arabidopsis (Sch-

neeberger et al., 2009) and Saccharomyces cerevisiae

(Wenger et al., 2010). Because these methods are not

suitable for species with large genomes, we developed

Sequenom-based BSA (Liu et al., 2010) and RNA-seq

based BSA (BSR-Seq) (Liu et al., 2012); these technolo-

gies have been used by us and others to map or clone

several maize genes whose qualitative mutants have

large effects (Yi et al., 2011; Makarevitch et al., 2012; Li

et al., 2013). Similarly, sequencing-based strategies, such

as next-generation mapping (Austin et al., 2011), MutMap

(Abe et al., 2012) or mapping-by-sequencing (Mascher

et al., 2014) have been developed to detect point muta-

tions in bi-parental populations. The extension of BSA to

quantitative traits was demonstrated in a bi-parental cross

of yeast (Ehrenreich et al., 2010).

As is the case with QTL mapping studies, all these NGS-

based BSA studies analyzed bi-parental populations that

were segregating for only a fraction of the genetic diversity

within a species. We wished to extend the NGS-based BSA

approach to diversity panels to more fully sample and inter-

rogate the genetic diversity that controls quantitative traits

within a species. We were encouraged in this effort by the

results of a simulation study that indicated that, if a suffi-

cient number of progeny were used, NGS-based BSA was

able to detect even small-effect loci (Ehrenreich et al.,

2010). In addition to reducing the number of samples to be

genotyped, use of a pooling strategy has the potential to

enrich for rare alleles and augment allele effects via

extreme phenotypic selection. Hence, we elected to

sequence pools of individuals that exhibit extreme pheno-

types from a large diversity panel that contains historical

recombination events. This method combines the simplicity

of genotyping pools with the superior mapping resolution

of GWAS (Figure 1), and was thus termed extreme-pheno-

type genome-wide association study (XP-GWAS).

We performed XP-GWAS for the quantitative trait kernel

row number (KRN) of maize (Zea mays) using a diversity

panel of approximately 7000 accessions. This trait was

selected to enable comparisons of our results with those

from a conventional GWAS (Brown et al., 2011). Approxi-

mately 200 lines with the lowest KRNs and a similar num-

ber with the highest KRNs were selected from the diversity

panel. In addition, a random set of approximately 200 lines

from the diversity panel was used as a control. These three

pools were genotyped via an exome capture and sequenc-

ing strategy that provided quantitative allele frequencies.

XP-GWAS identified 145 TAVs. These variants are enriched

in regions previously detected via traditional GWAS

(Brown et al., 2011). We also demonstrated the resolution

of XP-GWAS by separating multiple linked QTL and identi-

fying a single candidate gene under a single QTL peak. XP-

GWAS combines BSA’s simple experimental design with

the high mapping resolution of GWAS, and may be partic-

ularly attractive for researchers studying species for which

large, individually genotyped diversity panels do not exist

or cannot easily be generated, such as orphan crops or

ecological species.

Figure 1. Simplified scheme for XP-GWAS by investigating the allele fre-

quencies in different phenotypic pools.

(a) Based on the phenotypic distribution in a diversity panel, accessions

with high, low or random phenotypes were pooled for sequencing.

(b) De novo variant discovery was performed, and the number of reads

supported for reference variant call and alternative variant call were com-

puted in each of the phenotypic pools.

(c) The variant counts at each locus were subjected to statistical testing.
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RESULTS

Identification and pooling of lines with extreme KRN

phenotypes

The North Central Regional Plant Introduction Station

(NCRPIS), which is part of the US National Plant Germ-

plasm System (NPGS), maintains more than 10 000 acces-

sions of maize germplasm from across the world,

representing the vast diversity of this species (Vigouroux

et al., 2008). Phenotypic data, including KRN counts, are

available for 6952 of these accessions via the Germplasm

Resources Information Network (GRIN) database (http://

www.ars-grin.gov/). The KRN trait is approximately nor-

mally distributed within this diversity panel, with a mean

of 13.4 (Figure 2). Using these KRN data, we established

three pools of accessions. The mean and median pheno-

typic values for the three pools are 8.7/9 (low KRN pool),

13.5/13 (random KRN pool) and 19.7/19 (high KRN pool).

Each pool consists of approximately 200 accessions (selec-

tion intensity approximately 3%) (Table S1). The random

pool was created in addition to the high and low extreme

phenotypic pools to reflect background population allele

frequencies. The selected accessions originated from

approximately 60 countries on six continents.

Validation of phenotypic scores via replicated field trials

To test the reproducibility of the phenotypic data down-

loaded from the GRIN database, replicated field trials (Ex-

perimental procedures) were performed using a subset of

accessions selected because they represent extreme KRN

phenotypes in the GRIN database. The correlation (r)

between the GRIN data and our measurements in the low

KRN pool was only 0.27 (n = 16 accessions, P value = 0.3)

and that for the high KRN pool was only 0.45 (n = 29 acces-

sions, P value < 0.01) (Figure S1). The reason for these low

correlations is probably that individual accessions were

both highly heterozygous and genetically heterogeneous.

Even though the within-pool phenotypic correlations were

relatively low, a high correlation was observed between

the phenotypes of the two pools (r = 0.96, P value < 0.01).

This indicates that members of the high KRN and low KRN

pools may be clearly distinguished even using the pheno-

types extracted from the GRIN database.

Exome-sequencing of three XP-GWAS pools

XP-GWAS starts with genotyping the extreme phenotype

pools. Genotyping with a pre-defined SNP array creates an

inherent ascertainment bias. This bias may be overcome

by de novo SNP discovery within the pools, for example

via whole-genome sequencing of each pool. However,

because of its large genome (approximately 2.3 Gb) (Schn-

able et al., 2009) and high proportion of repetitive DNA

(approximately 80%) (Baucom et al., 2009), we focused our

sequencing resources on the genic regions of each pool.

This was achieved by sequencing the products of an

exome-capture experiment (Bashiardes et al., 2005; Fu

et al., 2010)

A solution-based sequence capture library was designed

and manufactured by NimbleGen (see Experimental proce-

dures) to survey the complete B73 exome plus additional

sequences that were not used in the current analysis.

Using this ‘Zeanome’ probe library, sequence capture was

performed on barcoded, fragmented genomic DNA sam-

ples from three XP-GWAS pools. The captured DNAs were

then sequenced using four lanes of an Illumina HiSeq 2000

instrument, generating a total of approximately 770 million

100 bp paired-end reads. A custom bioinformatics pipeline

(Li et al., 2012) was used to align the raw reads to the

maize B73 reference genome (RefGen_v2) (Experimental

procedures). After data processing, approximately 302, 368

and 294 million single-end reads were uniquely mapped to

the reference genome for the high, low and random KRN

pools, respectively (Table S2). These uniquely mapped

reads were analyzed to evaluate capture performance and

to call variants.

The exome of the filtered gene set (FGSv5b.60) of the

B73 reference genome was considered our intended target,

although the design space included probes designed to

other sequences (Experimental procedures). The mean

sequencing depths on the filtered gene sets of the three

pools were 142 x (high KRN), 175 9 (low KRN) and 145 9

(random KRN). Approximately 85% of the reference genes

(84% for high KRN, 87% for low KRN and 84% for random

KRN) have a depth of coverage greater than 50 9

(Figure 3a–c). The mean percentages of coverage from

Figure 2. . KRN phenotype of diverse germplasm accessions.

Histogram and density plot of germplasm accessions (n = 6952) in the GRIN

database, and density plots of three selected KRN phenotypic pools: low,

high and random.
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Figure 3. Histograms of depth of sequencing (a–c) and coverage (d–f) for the filtered gene set (FGSv5b.60) of three phenotypic pools.

(a–c) Vertical dashed lines indicate 50 x depth sequencing.

(d–f) Vertical dashed lines indicate 90% gene coverage.
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transcript start to end for the reference genes were 99.0%

(high KRN), 99.3% (low KRN) and 98.6% (random KRN).

Approximately 98% of the reference genes (98% for high

KRN, 99% for low KRN and 97% for random KRN) have at

least 90% coverage (Figure 3d–f). Bait probes may capture

adjacent regions (Fu et al., 2010); therefore we anticipated

capturing not only exonic regions but also intronic and

promoter regions. Indeed, 7% of the reads (high KRN), 6%

of the reads (low KRN) and 7% of the reads (random KRN)

were mapped to intronic or 5 kb upstream regions. The

results indicated that, even using conservative estimates,

Zeanome Seq-Cap proved to be an efficient method to

enrich the intended target with a high depth of sequencing

and a high rate of coverage.

A total of 5.14 million variants including SNPs (n = 4.75

million, 92%) and small indels (n = 0.39 million, 8%) were

identified using a custom variant calling pipeline (Experi-

mental procedures). Simulation studies established that

adequate read depth is critical to accurately estimate allele

frequencies in the XP-GWAS pools (Figure S3). However,

increasing the minimum read depth required to call vari-

ants dramatically reduces the number of common variants

identified across the three pools (Figure S2). In addition,

the read depth cut-off also affects the sensitivity for identi-

fication of rare alleles. Based on these simulations, we con-

cluded that a minimum read depth of 50 9 provides an

appropriate balance between minimizing the negative

effects of sampling variation and maintaining high num-

bers of variants detected. After filtering, using this 50 9

read depth cut-off, 944 549 common variants were

retained, including 828 855 SNPs (88%) and 115 694 small

indels (12%). These variants were distributed across 87%

of the high-confidence maize filtered genes (FGSv5b.60);

on average, 18 variants were detected for each gene, and

the most extreme gene (GRMZM2G047347) contains 246

polymorphic sites. As anticipated, variants were not limited

to exonic regions; only approximately 41% of variants were

located in exons. Approximately 34% of variants were

located in introns, approximately 9% were located within

5 kb upstream of genes, and approximately 10% were

located within 5 kb downstream of genes (Figure S4). This

is relevant because, although genes and 5 kb upstream

regions comprise only 13% of the genome, variations

within these regions account for approximately 35–47% of

phenotypic variation in maize (Li et al., 2012). The ability of

the Zeanome Seq-Cap library to capture both the exome

and adjacent regions enabled us to focus sequencing

resources, thereby enhancing the power of this study to

identify associations.

Identification of extreme phenotype-associated variants

The primary factor used to create the three phenotyptic

pools was the KRN phenotype. Even though an effort was

made to maintain geographic diversity in the pools, popu-

lation structure or cryptic within-group relatedness was

unavoidable. This cryptic population structure may lead to

over-dispersion of the v2 test statistic, thereby resulting in

false discovery. To attenuate the effects of population

structure, a genomic control method (Devlin and Roeder,

1999) was implemented to adjust the v2 test statistic (Ex-

perimental procedures). After implementing this genomic

control, the quantile–quantile plot (Figure S5) showed that

most of the observed data conformed closely to expecta-

tion except at the tail, indicating that the population struc-

ture was successfully controlled and some association

signals were detected.

Using this approach, 145 TAVs were identified at a false

discovery rate (FDR) (Benjamini and Hochberg, 1995) of

0.05 (Figure 4). These identified TAVs represent 121 1 kb

bins distributed across ten chromosomes. To understand

the patterns of differences in allele frequencies amongst

the pools, at each TAV site read counts matching the refer-

ence allele were divided by total read counts to derive the

reference allele frequency. We noted that the B73 inbred

line (which provided the reference genome) with a mean

of 17.6 kernel rows is phenotypically closer to the mean

value of the high KRN pool (mean KRN = 19.5) than to the

value of low KRN pool (mean KRN = 8.7), and previous

studies found that the KRN trait was mostly controlled by

additive gene effects (Toledo et al., 2011). Therefore, it was

not surprising that 81% (118/145) of reference allele fre-

quencies of the TAVs exhibited an inheritance pattern of

high > random > low, compared with only 1% (2/145) that

exhibited the opposite pattern (high < random < low)

Figure 4. Manhattan plot of XP-GWAS results.

The horizontal dashed line indicates the 5% FDR

threshold.
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(Figure S6a,c). The remaining TAVs exhibited other pat-

terns (Figure S6b,d).

Comparisons between the results from XP-GWAS and

traditional GWAS

We compared the 145 TAVs to 261 TAVs previously

detected via conventional GWAS (Brown et al., 2011).

The two sets of variants were mapped to the same ver-

sion of the reference genome (RefGen_v2). Using a bin

size of 1 Mb, 17% of the TAVs (25/145) overlapped with

the variants identified by traditional GWAS. This number

of overlapping bins was statistically significant (P < 0.05)

based on a simulation test (Experimental procedures).

The TAVs were also compared with 986 recently identi-

fied TAVs (Yang et al., unpublished results). Their study

used 6230 entries (each of which was individually geno-

typed and phenotyped) from four related maize popula-

tions. The results of this traditional GWAS were analyzed

using three complementary statistical approaches. Signifi-

cant TAVs from these GWAS were subjected to cross-val-

idation experiments in three independent populations.

Using the same 1 Mb bins, 35% (51/145, P value < 0.05)

of the TAVs identified in the present study overlapped

with the TAVs identified via this 2nd conventional

GWAS.

TAVs hit linked QTL regions with high resolution

Several previous QTL studies detected multiple QTLs that

co-localize on the long arm of chromosome 4 (Beavis

et al., 1994; Veldboom et al., 1994; Austin and Lee, 1996).

A recent conventional study using GWAS (Yang et al.,

unpublished results) also detected clusters of TAVs in

these regions. In an attempt to resolve these linked QTLs,

a chromosome walking experiment was performed (Exper-

imental procedures), mapping one of the KRN QTL to a

2.7 Mb interval defined by a pair of SNPs (Figure S7).

XP-GWAS also identified TAVs in this region. Using pair-

wise comparisons of three independent v2 tests (high ver-

sus low, high versus random, and low versus random)

with genomic control, four variants passed an FDR < 0.05

threshold and one variant was supported by two of the

independent pairwise tests (high versus low and low ver-

sus random) (Figure 5a). These four TAVs were all located

in the gene GRMZM2G039106, which is itself located under

the peak of the fine-mapped QTL interval (Figures 5b and

S7). The high KRN pool of these variants maintained high

reference allele frequencies, consistent with our original

determination that the favorable allele was derived from

B73. In addition to identifying TAVs in this region,

XP-GWAS identified TAVs in three other chromosomal

Figure 5. XP-GWAS and independent pairwise v2 test results on regions of chromosome 4.

(a) XP-GWAS results.

(b–e) Magnified results for four chromosomal regions. The top four panels show a magnified plot of the XP-GWAS in the region, and independent pairwise v2

tests for the high KRN pool versus the low KRN pool, the high KRN pool versus the random KRN pool, and the low KRN pool versus the random KRN pool,

respectively. Red dashed lines indicate the 5% FDR threshold. The bottom panels show the read depth of three KRN pools using a bin size of 1000, where blue

lines represent the high KRN pool, red lines represent the low KRN pool, and yellow lines represent the random KRN pool, respectively.
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regions on the long arm of chromosome 4: chr4:185-186M,

chr4:186-187M and chr4:200-201M (Figure 5c–e). These

variants were located in genes GRMZM2G111928,

GRMZM2G095141 and GRMZM2G098557. Favorable alleles

of these loci were all derived from B73, which is consistent

with previous QTL findings.

DISCUSSION

Conventional GWAS experiments have been used to iden-

tify loci associated with important traits in agricultural spe-

cies. These analyses require that large panels of

individuals be genotyped, which is still expensive despite

recent advances in genotyping technologies. Recently,

regions of the maize genome under selection for a quanti-

tative trait (seed size) were detected by sequencing pools

of individuals from pairs of extreme populations derived

from a long-term divergent selection program (Hirsch

et al., 2014). Although this approach eliminates the need to

genotype large panels of individuals, it requires access to

populations that have undergone multiple generations of

selection. In contrast, XP-GWAS relies on the pooling of

extreme phenotypes from readily available diversity pan-

els, and may be applied to any trait of interest. Using XP-

GWAS, we identified 145 TAVs with only several days of

hands-on time and at modest cost. In this study, the reso-

lution afforded by XP-GWAS was comparable with results

from conventional GWAS. Specifically, using both meth-

ods, we were able to identify variants within a fine-mapped

QTL region that is embedded within a cluster of linked

QTL. As a consequence of the exome sequencing strategy

used in this implementation of XP-GWAS, approximately

90% of the TAVs were located in genes and their 5 kb

flanking regions. Although these identified genes are

potential candidates for further investigations, as is the

case for associations obtained from all GWAS, the identi-

fied TAVs and the associated genes may not themselves

be causative but may have been identified as a conse-

quence of linkage disequilibrium (LD).

The power of XP-GWAS is affected by many factors,

including the precision of phenotyping, pool sizes, selection

intensity, marker density, and the depth of sequencing. Our

results demonstrate that XP-GWAS tolerates a degree of

inaccuracy in the phenotyping data. For example, the KRN

phenotypic data used in this study were collected based on

observations during routine seed propagation activities at

the North Central Regional Plant Introduction Station rather

than via a systematic field trial design. However, XP-GWAS

would be expected to have more power if the underlying

phenotypic data were more precisely assayed. In addition,

simulated power analyses for BSA found that increasing

the bulk size while maintaining the selection intensity con-

stant at 5% has the potential to increase the power to detect

small-effect QTLs (Ehrenreich et al., 2010). This implies that

large diversity panels are desirable. Another simulation

study (Magwene et al., 2011) suggested that BSA would be

more powerful if the selection intensity were higher than

10%, assuming sufficient amounts of quantitative genotyp-

ing. This report recommended using a mean depth of

sequencing at least as high as the number of individuals in

a pool. In addition to depth of sequencing, adequate maker

density is also critical. The ability of XP-GWAS to detect

associations relies on differences in allele frequencies of

markers in LD with the QTL of interest in the phenotypic

pools. Therefore, the appropriate marker density for XP-

GWAS, just as for conventional GWAS, is affected by the

size of LD blocks. Although LD is affected by many factors

(Flint-Garcia et al., 2009), LD generally decays rapidly in

out-crossing plant species such as maize (range 1–10 kb)

(Yan et al., 2009), and more slowly in self-pollinating spe-

cies such as rice (japonica approximately 150 kb; indica

approximately 75 kb) (Mather et al., 2007) and Arabidopsis

(250 kb) (Nordborg et al., 2002). In the 2.3 Gb maize gen-

ome, between 200 000 and 2 000 000 markers (2.3 Gb/1–
10 kb) are required to capture most of the genomic varia-

tion, assuming an LD block size of 1–10 kb. The number of

markers in the current study (944 549) is within this range.

Estimates of the number of markers required for other spe-

cies may be computed similarly.

The above considerations not only determine the power

of the study, they may also inform decisions about the

appropriate genotyping technologies to be used for XP-

GWAS based on the size of the target species’ genome

and available resources. For relative small genomes such

as cucumber (243.5 Mb) (Huang et al., 2009) and straw-

berry (approximately 240 Mb) (Shulaev et al., 2011),

whole-genome sequencing may detect not only SNPs and

short indels, but also present/absent variations (PAVs) and

copy number variations (CNVs). For larger, complex gen-

omes, options for reduced representation genotyping

include restriction digestion-based methods (Van Tassell

et al., 2008), RNA sequencing (Haseneyer et al., 2011) and

targeted sequence capture (Bashiardes et al., 2005). Some

of these methods may be applied to species that lack refer-

ence genomes. If an RNA-seq based genotyping approach

(Barbazuk et al., 2007) is used, loci that exhibit associations

to traits must be interpreted within the context of their

expression profiles.

This study introduces the Zeanome capture library to the

maize genetics toolkit. Using this library, it is possible to

focus sequencing resources on the non-repetitive portions

of this large and repetitive genome.

Although XP-GWAS has significant advantages com-

pared to other methods of identifying marker/trait associa-

tions, it also has some inherent limitations. For example,

as a consequence of the need to pool individuals by phe-

notypes, a separate XP-GWAS experiment must be per-

formed for each trait of interest. Furthermore, because

inferences rely on allele frequencies in populations, it is

© 2015 The Authors
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probably not possible to estimate individual variant effects

and heritability via XP-GWAS. The number of marker/trait

associations detected by XP-GWAS (n = 145) in this experi-

ment was somewhat lower than the number obtained via

conventional GWAS (n = 260) (Brown et al., 2011). How-

ever, because the two study populations have different

genetic compositions, the absence of complete overlap

between the two experiments may be at least partly a con-

sequence of population-specific signals. In addition, even if

the power of XP-GWAS is increased by using greater depth

of sequencing, larger and/or better-designed pools and

more precise phenotyping, XP-GWAS is not expected to

yield better performance than conventional GWAS because

pooling introduces stochastic effects and uncertainties.

This limitation is counter-balanced by the substantial

reduction in genotyping cost for XP-GWAS compared to

conventional GWAS.

Conventional GWAS has the potential to yield false-posi-

tive signals as a consequence of population structure; this

remains an important issue for XP-GWAS. False associa-

tions arise if a set of closely related lines are included in

one extreme pool and another set of related lines are pre-

sent in the other extreme pool. To reduce the effects of

population structure, we introduced a random pool.

Because this pool is a random sample of the population

(i.e. the diversity panel), variant frequencies in this pool

were treated as estimates of these frequencies in the popu-

lation. Second, a statistical approach widely used in con-

ventional GWAS was adapted to correct the inflation of the

test statistic in XP-GWAS. In this method, a genomic con-

trol parameter k was defined as the median (or mean) v2

association statistic across genome-wide markers divided

by its theoretical value under the null distribution. A value

of k = 1 indicates the absence of population structure

effects, while k > 1 indicates the existence of some degree

of population structure that should be corrected for.

In addition to the above approaches, a careful experi-

mental design has the potential to reduce the effects of

population structure. Similarly, use of matched samples

(selecting pairs of extreme samples from the same geo-

graphic origin) has potential to reduce the effects of popu-

lation structure. Of course this will not be effective if

accessions from the same geographic region do not have

similar genetic backgrounds, for example as a conse-

quence of migration. To overcome this problem, ancestry

matching through genotyping was proposed in a human

case and control study (Crossett et al., 2010). Type I error

may be effectively controlled by this method, but requires

genotyping of individual samples within the pools, albeit

perhaps with only a small number of markers.

By taking advantage of advances in sequencing tech-

nologies and the development of appropriate statistical

approaches, XP-GWAS promises to enhance the rate of

genetic gain in crops, e.g. by identifying loci that may be

used for marker-assisted selection and allele mining. XP-

GWAS may also be used for the discovery of loci that play

important roles in ecologically significant wild species, e.g.

genes that confer resistance to stresses associated with cli-

mate change. Our initial XP-GWAS was performed in

maize because it was possible to compare our results with

those obtained from conventional GWAS. However, the

most appropriate targets for XP-GWAS are probably not

major crops such as maize, for which extensive previously

genotyped diversity panels exist. Instead, XP-GWAS may

be most relevant for minor/orphan crops (Collard and

Mackill, 2008; Varshney et al., 2012), for which large, phe-

notypically characterized germplasm collections often

already exist. These existing phenotypic data may be used

for XP-GWAS as an efficient and cost-effective method to

identify loci that control agronomically significant loci.

EXPERIMENTAL PROCEDURES

Genetic materials, DNA extraction and phenotyping

Maize germplasm accessions were obtained from the North
Central Regional Plant Introduction Station (NCRPIS, http://
www.ars.usda.gov/main/) based on the KRN records in the GRIN
database (http://www.ars-grin.gov/). Efforts were made to select
geographically diverse lines. However, the majority of the acces-
sions selected were from the USA. As a further control, we
selected similar numbers of high, low and random accessions
from the USA. A similar strategy was used for other countries for
which sufficient numbers of accessions with sufficient phenotypic
diversity were available. These accessions were bulked into three
phenotypic pools: the high KRN pool (n = 226), low KRN pool
(n = 208) and random KRN pool (n = 173) (Table S1). Because
these accessions are both heterogeneous and heterozygous, tis-
sue for DNA extraction was sampled from 12 plants per accession
and pooled. After pooling tissues from all accessions, DNA was
extracted using a CTAB method (Clarke, 2009).

To test the accuracy of the phenotypic data, 45 accessions (29
from the high KRN pool and 16 from the low KRN pool) were
planted in two locations. Within each replication, each accession
was planted in a row of 12 plants. KRN phenotypes were deter-
mined at harvest. Values of KRN were estimated by fitting a mixed
linear model (Gilmour et al., 1997), where genotype was fitted as
a fixed effect and location was fitted as a random effect. The
mixed model was implemented using the R add-on package
‘nlme’ (https://cran.r-project.org/web/packages/nlme/index.html).

Zeanome capture probe design and exome sequencing

A solution-based Zeanome capture library was designed by Roche
Nimblegen. This library contains 186 513 probes designed from
39 656 maize gene models (FGSv5b.60) comprising approximately
60 Mb of non-repetitive sequences.

Before exome capture, indexed adapters (barcodes) were sepa-
rately added to the three pooled DNA samples according to the
TruSeq DNA sample preparation guide (Illumina). After DNA
quantification using an Agilent bioanalyzer and a high-sensitivity
DNA bioanalyzer kit (catalog number 5067–4626), 300 lg DNA
from each sample were pooled. Then sequence capture was per-
formed according to the NimbleGen protocol. The captured DNA
was quantified on the Agilent bioanalyzer and diluted to
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10 ng ll�1. The prepared library was sequenced on an Illumina
HiSeq 2000 machine using the paired-end 100-cycle protocol. The
exome-capture sequence data have been deposited at the
National Center for Biotechnology Information Short Read Archive
under accession number SRP060571.

Genome alignment and variant calling

As reported in our previous study (Li et al., 2012), the nucleotides
of raw reads were scanned for low quality, and quality values
lower than the threshold were trimmed using a custom pipeline.
Trimmed reads were then aligned to the reference genome using
GSNAP (Wu and Nacu, 2010) as paired-end fragments. The coordi-
nates of confident and single (unique) alignment that passed our
filtering criteria were used for SNP and small indel discovery.
Polymorphisms at each potential variant site were carefully exam-
ined and putative variants were identified.

XP-GWAS with genomic control

To perform XP-GWAS, a generalized linear model analysis was
performed for each variant using the ‘glm’ function in R. Each ref-
erence allele count for a given phenotypic pool was modeled as a
binomial random variable with the number of trials equal to the
sum of the reference and alternative allele counts for that pool.
The logit of the binomial success probability was modeled as a
linear function of phenotypic pool number (1 = low KRN, 2 = ran-
dom KRN, 3 = high KRN). The likelihood ratio test statistic for
testing the null model of no association between success proba-
bility and phenotypic pool number was computed. This statistic
will tend to be large when the success probabilities either increase
or decrease with phenotypic pool number. Due to the non-inde-
pendence of samples raised from population structure, the usual
v2 approximation to the distribution of each likelihood ratio test
statistic is inappropriate. To correct for this, the inflation factor k
proposed by Devlin and Roeder (1999) was estimated using the R
add-on package ‘gap’ (https://cran.r-project.org/web/packages/gap/
index.html). The likelihood ratio test statistics were divided by k
and used to derive P values. Finally, the FDR method was applied
to the resulting P values to identify significant variants while con-
trolling FDR at the 5% level. Scripts associated with this study are
available on Github (https://github.com/schnablelab/XP-GWAS).

Fine mapping of a QTL located in the Chr4:169-180 Mb

interval

In an earlier study, we identified KRN QTL using 291 inter-mated
B73 and Mo17 recombinant inbred lines (Yang et al. unpublished
results). One large-effect QTL (effect = 1.3 rows, heritabil-
ity = 15%) located in the Chr4:169-179 Mb interval was selected
for fine mapping. Two SNP markers (M13783 and M89103) were
designed to define the QTL interval. After genotyping a set of IBM
recombinant inbred lines, two recombinant inbred lines (M0024
and M0054), which contain an Mo17 fragment on the QTL interval,
were identified. These two recombinant inbred lines were back-
crossed to B73 twice to create the F1BC2 mapping population,
with the first back-cross being performed after genotyping. On
average, the mapping population contained approximately 6%
Mo17 materials in a B73 background. After screening approxi-
mately 6100 of these F1BC2 plants using the two SNP markers,
262 recombinants were initially identified, and they both selfed
and outcrossed to their recurrent parent B73. These identified
recombinants were further genotyped using 26 SNPs located
within the QTL interval to define their recombination break points
(Table S3). For the back-crossed recombinants, 26 heterozygous
families with unique break points were chosen and planted in

replicated plot trails with 12 plants in six replications to collect the
KRN phenotype. For the selfed recombinants, 220 homozygous
recombinant families were successfully created by further selfing
the identified homozygous plants. These homozygous recombi-
nants were phenotyped using a replicated field design with seven
plants in eight replications (Table S4).

Monte Carlo simulation procedures

A Monte Carlo simulation procedure (Rubinstein, 1981) was used
to test the hypothesis that the number of overlapping loci
between this study and previous results via traditional GWAS has
no difference than expected by chance. First, the same number of
variants was sampled from a set of 0.94 million variants to resem-
ble the TAVs. Then the number of overlap TAVs was recorded as
the test statistic. This procedure was repeated 10 000 times, and
the number of test statistics larger than the observation value was
divided by the total number of simulations to derive an empirical
Monte Carlo P value (Johnson et al., 2011).
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Additional Supporting Information may be found in the online ver-
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Figure S1. Validation of KRN phenotypic values in the database
using our replicated field trial observations.

Figure S2. Plots of number of variants and the required read depth
for variant calling.

Figure S3. Simulation of random sampling error with different
read depth.

Figure S4. Distribution of off-target variants identified by exome
sequencing.

Figure S5. Quantile–quantile plots of the v2 distribution of the XP-
GWAS.

Figure S6. Reference allele frequencies of the identified TAVs.

Figure S7. QTL fine mapping results.

Table S1. Accession IDs and KRN values of the selected high KRN,
low KRN and random KRN lines.

Table S2. Summary of exome sequencing results of the three KRN
pools.

Table S3. Genotypic data of the identified recombinants for QTL
fine mapping of Chr4:169-180 Mb using 26 SNPs.

Table S4. KRN phenotypic values of the identified homozygous
recombinant families.
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