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ABSTRACT Plant breeders make selection decisions based on multiple traits, such as yield, plant height, flowering time, and disease
resistance. A commonly used approach in multi-trait genomic selection is index selection, which assigns weights to different traits
relative to their economic importance. However, classical index selection only optimizes genetic gain in the next generation, requires
some experimentation to find weights that lead to desired outcomes, and has difficulty optimizing nonlinear breeding objectives.
Multi-objective optimization has also been used to identify the Pareto frontier of selection decisions, which represents different trade-
offs across multiple traits. We propose a new approach, which maximizes certain traits while keeping others within desirable ranges.
Optimal selection decisions are made using a new version of the look-ahead selection (LAS) algorithm, which was recently proposed
for single-trait genomic selection, and achieved superior performance with respect to other state-of-the-art selection methods. To
demonstrate the effectiveness of the new method, a case study is developed using a realistic data set where our method is compared
with conventional index selection. Results suggest that the multi-trait LAS is more effective at balancing multiple traits compared with
index selection.
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GENOMIC selection (GS), which was initially proposed by
Meuwissen et al. (2001), is a special form of marker

assisted selection (MAS) that simultaneously estimates the
effects of genome-wide markers in a training population con-
sisting of genotyped and phenotyped individuals. Selection
decisions are based on genomic estimated breeding values
(GEBVs) in a breeding population, which are calculated as
the sum of the estimated marker effects. The advantages of
GS have been demonstrated by simulation and empirical
studies (Meuwissen et al. 2001; Schaeffer 2006; Goddard
2009; Makowsky et al. 2011; Wang et al. 2018).

Previous studies have focused mainly on the development
of models to improve the accuracy of GEBV prediction. Until
recently, few studies have considered alternatives to trunca-
tion selection on GEBVs followed by random mating of the

selected individuals. These studies have focused on selecting
the parents of the next generation by defining new quantita-
tive selection metrics (Goddard 2009; Daetwyler et al. 2015;
Goiffon et al. 2017; Moeinizade et al. 2020) or jointly consid-
ering selection and mating decisions (Akdemir and Sánchez
2016; Moeinizade et al. 2019). The latter two methods are
forms of mate selection (Kinghorn and Shepherd 1999) that
optimize the contributions of potential parents to the next
generation based on maximizing a desired breeding objec-
tive. Typically, the optimization is performed with respect
to the next generation (Akdemir and Sánchez 2016; Kinghorn
and Kinghorn 2016). Look-ahead mate selection (LAMS)
schemes that optimize parental contributions with respect to
grand-progeny (i.e., two generations in the future) have also
been proposed in the context of animal breeding (Hayes et al.
1998, 2002; Shepherd and Kinghorn 1998).

Moeinizade et al. (2019) implemented a LAMS scheme—
look-ahead selection (LAS)—in a stochastic simulation frame-
work that seeks to optimize the performance of the best pos-
sible progeny in an arbitrarily defined terminal generation.
This strategy was shown to outperform conventional genomic
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selection (Meuwissen et al. 2016), optimal haploid value se-
lection (Daetwyler et al. 2015), and optimal population value
selection (Goiffon et al. 2017) using empirical data from a
population of maize inbred lines. LAS outperformed previous
approaches by achieving more genetic gain and preserving
more genetic diversity over the course of a simulated breeding
program.

Although LAS presents a significant improvement over
competing methods, it is confined to single trait genomic
selection (ST-GS). Generally, the productivity of a crop variety
is dependent on multiple characteristics such as yield, grain
quality, and disease resistance. Hence, selection and mating
decisions should be based on several different characteristics
with potentially different breeding goals. Multi-trait selection
poses difficulties for breeders because it often requires bal-
ancing competing breeding objectives. Four principle multi-
trait genomic selection (MT-GS) strategieshavebeenproposed
in the literature: (1) tandem selection, whereby different traits
are selected independently in different generations (Burgess
andWest 1993); (2) independent culling, whereby truncation
selection is performed on multiple traits simultaneously with
independent thresholds (Hazel 1943); (3) index selection,
whereby multiple traits are selected at the same time by con-
structing an index that is a linear combination of multiple
traits (Hazel and Lush 1942; Hazel 1943); and (4) mate
selection, whereby multiple traits are selected at the same
time by finding Pareto optimal solutions of a mate selection
index (Kinghorn and Kinghorn 2016).

Tandem selection, by definition, is not capable of selecting
multiple traits simultaneously, and is most useful when some
traits should be selected in earlier generations than others.
Independent culling does perform simultaneous selection but
is very sensitive to the truncation points for thedifferent traits.
Index selection has become an important method that has
been widely used for the development of superior varieties in
both animal and plant breeding (Villanueva and Woolliams
1997; Jannink et al. 2000; Ivkovich and Koshy 2002; Sharma
and Duveiller 2003; Long et al. 2006; Yan and Frégeau-Reid
2008). This often takes the form of truncation selection on
an index constructed by integrating information on the
economic values of the different traits and their phenotypic
and additive genetic covariances. Brascamp (1984) provides
a concise summary of different selection indices. Mate selec-
tion can consider different constraints and breeding goals for
multiple traits, and evaluates these criteria in the context of a
proposed set of matings. Two recent studies in plants have
evaluated the use of mate selection on long-term genetic
gains (Suontama et al. 2018; Cowling et al. 2019). Additionally,
Akdemir and Sánchez (2016) and Akdemir et al. (2019) have
developed new mate-selection methods for single- and multi-
trait scenarios, respectively, with an emphasis on application to
plant breeding.

An additional challenge in multi-trait selection is the def-
inition of breeding objectives for each trait. For example, a
breeder wishing to maximize grain yield might also need to
maintain minimum standards for standability and disease

resistance, and an acceptable range of plant heights.
Kempthorne and Nordskog (1959) proposed maintaining a
trait at an optimal level by weighting its squared deviations
from the optimum. Wilton et al. (1968) generalized this ap-
proach to include both squares and cross products of multiple
traits. Moav andHill (1966) developed a graphical method to
calculate explicitly nonlinear indices on two traits. Later, iter-
ative solutions were developed to identify the optimal weights
for a nonlinear index on an arbitrary number of traits Itoh and
Yamada (1988); Pasternak and Weller (1993). However, the
general solution for the weights of a nonlinear index is depen-
dent on the population mean prior to selection and the inten-
sity of selection (Weller et al. 1996). Therefore, the optimum
selection index changes each generation and will be different
from an index thatmaximizes gains overmultiple generations.

In this paper, we propose an extension of the single-trait
LAS method to multiple traits with different breeding objec-
tives. The method maximizes a single, main trait while con-
straining other traits to fall within flexibly defined ranges. It
retains the advantages of single-trait LAS derived from con-
sidering the impacts of selection, mating, and resource allo-
cation decisions on the performance of individuals in the
terminal generation of the breeding program.

Materials and Methods

Data sets

Adataset of 5022maize recombinant inbred lines (RILs) from
theUSnested associationmapping (US-NAM) (Yu et al.2008)
and intermated B73xMo17 (IBM) (Lee et al. 2002) popula-
tions was used in this study. Best linear unbiased predictors
(BLUPs) for total kernel weight were taken from Yang et al.
(2018). BLUPs for ear height were calculated from the pheno-
typic data in Kusmec et al. (2017) using a mixed model with
genotype and environment as random effects. The mixed
model was implemented in the R package lme4 (Bates
et al. 2015).

SNPs from Kusmec et al. (2017) were thinned using PLINK
v1.90b (Chang et al. 2015) using the “indep-pairwise” func-
tion with a window size of 250 kb, a step size of 50 SNPs,
and a linkage disequilibrium (LD) threshold of 0.6. Thinned
SNPs were imputed and phased with Beagle v4.0 (Browning
and Browning 2008) using default parameters. This pro-
duced 359,826 imputed and phased SNPs. SNP effects for
each phenotype were estimated using the BayesB algorithm
(Meuwissen et al. 2001) implemented in GenSel4 (Fernando
and Garrick 2009). Recombination rates were estimated using
the genetic map for the US-NAM population (Yu et al. 2008)
following the procedure outlined in Goiffon et al. (2017).

Simulation design

A total of 100 independent simulations of a 10-generation
breeding programwere performed using a maize data set. An
initial population of 200 individuals was randomly selected
from the full data set, and, in each generation, 20 individuals
were selected to make 10 crosses. More details on the
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simulation steps are available in Goiffon et al. (2017) and
Moeinizade et al. (2019).

Single-trait LAS

In this section, we review the LAS method that was recently
proposed for single-trait genomic selection (Moeinizade et al.

2019). To make this algorithm more robust, we present an
equivalent reformulation of this method and then discuss
how this algorithm can be extended for multiple trait settings
in the next section.

The single-trait LAS (ST-LAS) method anticipates the con-
sequences of selection and mating decisions over several

Figure 1 The look-ahead simulation illustration for MT-LAS
method. In this example, the population consists of 16 indi-
viduals. In generation t, eight individuals are selected from
the population and mated accordingly to make four crosses.
Each breeding parent produces one progeny in generation
t + 1 and from generation t + 1 to T 2 1 all progeny are
crossed with each other in the same generation, each pro-
ducing one progeny. Then, the look-ahead objective can be
approximated by taking a random sample of progeny in
generation T. In this example, 20 lines are produced and
the GEBV of each individual with respect to traits 1 and
2 are measured and visualized with green and blue bars,
respectively. Our goal is to maximize trait 1 after T 2 t
generations while making sure that trait 2 does not exceed
a certain value of u = 35 and is not,l = 15. We observe that
10 individuals among 20 are not acceptable. The progeny
with acceptable values for bounded trait are distinguished
with check marks. The penalized GEBVs are calculated and
represented as purple bars and calculation of the objective u
is demonstrated for a given g.

Multi-trait Look-Ahead Selection 933



generations via simulation by quantitatively taking into ac-
count recombination frequencies during meiosis. The ST-LAS
method has made three major contributions to the literature:
(1) time management: ST-LAS is the only GS method that
takes time constraints into account and is deadline sensitive;
(2)mating strategyoptimization: theST-LASmethodnotonly
makes the selectiondecisions but also specifies how to pair the
selected individuals for mating; and (3) resource allocation:
this method uses a heuristic strategy to allocatemore progeny
to crosses betweenmore diverse parents to increase the prob-
ability of producing high performing individuals.

The cornerstone of this method is evaluating a given
selection and mating strategy by estimating the distribution
of progeny GEBVs in the final generation. By simulating the
GEBVs of a random sample of individuals in the final gener-
ation, a breeder can make better selection and mating deci-
sions. This method can be formulated as the following
optimization model (Moeinizade et al. 2019):

max
x;y

f LASðx; y; r; tÞ (1)

s:t:
XN

n¼1

xn ¼ S (2)

xn 2 f0; 1g "n 2 f1; . . . ;Ng (3)

xn ¼
XN

j¼1

yn;j "n 2 f1; . . . ;Ng (4)

yi;j 2 f0; 1g "i; j 2 f1; . . . ;Ng (5)

This optimization model has two decision variables: x, which
represents the selection strategy, and y, which represents the

mating strategy. Below is a detailed description of the objective
as well as all variables and parameters used in this model:

f Las: The expected GEBV of the best offspring in the terminal
generation.

xn: A binary decision variable that shows whether individual
n is selected ðxn ¼ 1Þ or not ðxn ¼ 0Þ:

yi,j: A binary variable that shows whether individual i is
mated with individual j ð yi;j ¼ 1Þ or not ð yi;j ¼ 0Þ:

r 2 ½0; 0:5�L21 : The recombination frequency vector.
t: The remaining number of generations (t ¼ T2 t where t

is the current generation and T is the deadline generation
number).

N: The number of individuals in the population.
S: The number of individuals that are to be selected out of

the current population.

As demonstrated in Equation (1), the objective of the
ST-LAS method is dependent on selection (x), mating (y), re-
combination frequencies (r), and remaining number of gen-
erations (t). Constraint (2) states that S individuals are
selected from total N individuals in the population to make
S/2 crosses (assuming that S is an even number) and con-
straint (3) ensures that the decision variable x, is binary.
Constraint (4) ensures that each selected individual is
mated once. Finally, constraint (5) states that the decision
variable y is binary.

In this model, evaluation of f LASðx; y; r;T2 tÞ is very chal-
lenging because of the uncertainty involved due to recombi-
nation frequencies (r) and also selection (x) and mating (y)
decisions over T 2 t generations. To deal with these chal-
lenges, a simulation optimization algorithm was designed
that estimates and maximizes the LAS objective function
by exploring the selection and mating solution space
efficiently.

Figure 2 (A) Population GEBVs of EHT vs. TKW for one simulation replicate over 10 generations when selection and mating decisions are optimized
using ST-LAS algorithm with an objective of maximizing TKW. Each generation includes 200 individuals represented by stars and different colors are
distinguishing between generations. The final generation has a minimum, mean, and maximum of 34.36, 40.25, 47.09 for TKW and 21.68, 7.17,
14.77 for EHT respectively. (B) Minimum, mean and maximum GEBVs of TKW and EHT over 10 generations averaged over 100 simulation replicates.
Selection and mating decisions are optimized using ST-LAS algorithm with an objective of maximizing TKW. The final generation has a minimum, mean,
and maximum of 33.30, 39.04, 44.51 for TKW and 22.73, 7.00, 16.54 for EHT respectively.
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Equivalent formulation of ST- LAS

According to Moeinizade et al. (2019), the objective of
ST-LAS is to maximize the expected GEBV of the best off-
spring in the terminal generation (Equation 1). The best off-
spring can be the individual with maximum expected GEBV
in the final generation; however, the maximum value does
not necessarily represent the whole distribution. Tomake the
prediction more robust and reduce the influence of outliers,
we present an equivalent reformulation of the ST-LAS
method (Equations 6–8) where the best offspring is defined
as the 100gth percentile among predicted GEBVs of individ-
uals in the terminal generation.

max
x;y

f (6)

s:t: Constraints ð2Þ; ð3Þ; ð4Þ; and ð5Þ (7)

Pr½g1ðx; y; r; tÞ$f�$ 12 g (8)

Here, f is a threshold value, equivalent to the previous ob-
jective fLas, which represents the expected GEBV of the best
offspring in the final generation, where best is defined as the
100gth percentile of the simulated GEBV distribution. The
new variables and parameters are defined as follow:

f: The expected GEBV of the best offspring in the terminal
generation.

g1ðx; y; r; tÞ : The expected GEBV of a random progeny in the
terminal generation (for trait 1 which is the only trait in
the case of ST-LAS).

g: A parameter that defines which percentile of the GEBV
distribution is evaluated in the final generation.

In this model, constraint (8) states that, for a random
progeny in the final generation, the probability of having
an expected GEBV at least equal to the threshold value is
$1 2 g. For example, for a random sample of 1000 progeny,
if g = 0.98, then u will evaluate the GEBV of the top 2% of
progeny.

Multi-trait LAS

In this section, we present a new approach for MT-GS prob-
lems to optimize the main goal of a breeding program while
keepingother traitswithindesired ranges.Thisnewapproach,
multi-trait LAS (MT-LAS), extends the ST-LAS method to
multiple trait settings. It should be noted that the same
resource allocation heuristic from Moeinizade et al. (2019)
is applied to MT-LAS. This resource allocation strategy aims
to preserve more genetic diversity by varying the number of
progeny produced from each cross relative to their breeding
parents genetic diversity.

Assume there exists J different traits, of which one, j = 1
(e.g., yield), should be maximized while the other traits,
j 2 f2; 3; . . . ; Jg (e.g., plant height, ear height, etc.), should

Figure 3 Index selection considering different weights
for TKW and EHT averaged over 100 simulation repli-
cates. The mean GEBV of individuals over 10 generation
are calculated given a pair of weights for two traits. The
absolute values of the weights add up to one. Each
curve demonstrates the mean GEBV of individuals (rep-
resented by markers) over 10 generations for assigned
weights.
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satisfy certain criteria. This problem can be formulated as an
optimization model as follows:

max
x;y

f (9)

s:t: Constraints ð2Þ ‐ ð5Þ (10)

Pr½g1ðx; y; r; tÞ$fjlj# gjðx; y; r; tÞ#uj;
"j 2 f2; 3; . . . ; Jg�
$ 12 g

(11)

Thismodel shares the same objective and constraints (2), (3),
(4), and (5) with the equivalent reformulation of ST-LAS.
However, constraint (11) is a modification of constraint (8),
which focuses on making sure that traits j 2 f2; 3; . . . ; Jg fall
into desired ranges by defining a conditional probability. Be-
low is a detailed description of all new variables and param-
eters: his model shares the same objective and constraints
(2), (3), (4), and (5) with the equivalent reformulation of
ST-LAS. However, constraint (11) is a modification of con-
straint (8), which focuses on making sure that traits j 2 {
2,3,..., J } fall into desired ranges by defining a conditional
probability. Below is a detailed description of all new vari-
ables and parameters:

gjðx; y; r; tÞ: The expected GEBV of a random progeny in the
terminal generation for trait j where j 2 f2; 3; . . . ; Jg

lj: The lower value for trait j.
uj: The upper value for trait j.

Thismodel aims tomaximize the expected GEBV of the top
100 (12g)% of offspring in the terminal generation for the
trait of interest (e.g., yield) among offspring that also meet
thresholds with respect to other traits (e.g., plant height,
grain quality, etc.). Without loss of generality, lj ¼ 2N or
uj ¼ N capture the cases when only a lower bound or upper
bound should be considered. Note that when only one trait
(j = 1) is considered, this formulation is equivalent to ST-LAS.

TheST-LASoptimizationmodelwasalreadychallenging to
solve, and, after adding a nonlinear and nonconvex constraint

(11), the computational complexity increases significantly.
To overcome this challenge, we redefine constraint (11) by
converting the conditional probability on l and u to a penalty
that dynamically adjusts the objective function in response to
violations of the boundaries. The penalty allows violations of
the boundaries that are offset by improvements in the objec-
tive function. Take, for example, the case that the decision
maker wants to maximize yield while making sure that plant
height does not exceed a certain value. What if we could
improve yield by slightly violating the height constraint?
Wewant the height constraint to be true, but not at the expense
of losing the main objective.

The following mathematical model formulates the
problem:

max
x;y

ff (12)

s:t: Constraints ð2Þ ‐ ð5Þ (13)

uj ¼ Pr½lj# gjðx; y; r; tÞ# uj�;"j 2 f2; . . . ; Jg (14)

D ¼ maxðgjðx; y; r; tÞ2 uj; lj2 gjðx; y; r; tÞ; 0Þ (15)

Pr½hðx; y; r; tÞ$f�$ 12g (16)

hðx; y; r; tÞ ¼ u1g1ðx; y; r; tÞ2
XJ

j¼2

ð12 ujÞ
J2 1

D (17)

Here, uj is the probability that a random progeny is accept-
able in the final generation with respect to trait j for

j 2 f2; 3; . . . ; Jg and u1 ¼
PJ

j¼2
uj

J2 1 : The new function hðx; y; r; tÞ
is a linear combination of the expected GEBV of a random
progeny for trait j ¼ 1 and the penalty of violating the desired
range for traits j 2 f2; 3; . . . ; Jg

Here are some properties of constraints (14)–(17):

The term D in Equation (15) represents the penalty for vio-
lating the upper or lower bounds for a random progeny in
the terminal generation. As the magnitude of the viola-
tion increases, the penalty term increases. In the case of
no violation, the penalty becomes 0.

From Equation (17), the term
PJ

j¼2
ð12 ujÞ
J2 1 D is the weighted

sum of penalties for all traits of j 2 f2; 3; . . . ; Jg The
weight (1 2 uj) is the probability that a random progeny
violates the desired range.

When all the individuals with respect to traits j 2 f2; 3; . . . ; Jg
(e.g., height) are acceptable, u1 = 1 and the focus will be
only on the trait of interest (e.g., yield).

The sum of all weights in Equation (17) equals 1
�
u1 þ

PJ
j¼2

ð12 ujÞ
J2 1 ¼

PJ

j¼2
uj

J2 1 þPJ
j¼2

ð12 ujÞ
J2 1 ¼ 1

�

The larger u1, the more weight is placed on the trait
of interest (e.g., yield) in selection and mating
decisions.

Table 1 Summary statistics of population GEBV values in generation
10 averaged over 100 replicate simulations for TKW using
conventional genomic selection with different weights (index
selection)

WTKW WEHT Min Mean Max

0 61 0.22 2.81 5.41
0.1 60.9 1.86 4.63 7.53
0.2 60.8 4.23 7.08 9.86
0.3 60.7 7.21 10.28 13.3
0.4 60.6 12.07 15.30 18.43
0.5 60.5 18.53 21.68 24.69
0.6 60.4 25.86 28.77 31.6
0.7 60.3 30.21 32.57 34.85
0.8 60.2 32.00 33.81 35.49
0.9 60.1 32.69 34.11 35.48
1 0 33.29 34.67 36.05

These results are based on simulations in Figure 3
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After evaluation of theMT-LAS objective function, the next
step is to optimize the model. A similar heuristic algorithm
fromMoeinizade et al. (2019) is used to optimize theMT-LAS
model. This algorithm is defined as follows.

Algorithm 1 Heuristic for optimizing the MT-LAS model

1. Select S random individuals from the population
2. Randomly mate selected individuals
3. Calculate  f  ðVmax)fÞ
4. Set f 2 f1; 2; . . . ; Sg as list of positions to check
5. Set nf 2 f1; 2; . . . ; Sg as number of positions to check
6. while nf $ 0 do
7. Generatez 2 ½1; nf � as a random integer
8. i)the  zth   value in  f
9. j)index of the  ith   individual

10. Swap jwith every unselected individual from population
11. Calculate  fw for every possible swap w
12. VmaxN)maxðfwÞ
13. if VmaxN#Vmax then
14. Reject the swap and keep j
15. Remove the zth position on from f
16. else
17. Accept the swap
18. Vmax ¼ VmaxN
19. f 2 f1; 2; . . . ; Sg∖i
20. nf = S 2 1
21. end
22. end

Example with illustration

In this section, we illustrate the MT-LAS method with an
example to provide a more intuitive description. Assume that
the goal ismaximizing yield (trait 1)while ensuring that plant
height (trait 2) falls within a desired range. For a given selection
andmating strategy at the current generation (t), the look-ahead
stochastic simulation predicts the GEBV of individuals in the final
generation (T)with respect to both traits as illustrated inFigure1.

In this example, 20 random progeny are produced in the
final generation. The GEBVs of these progeny for both traits
are approximated with the look-ahead algorithm. In Figure 1,
the green and blue bars represent the GEBVs for each prog-
eny with respect to traits 1 and 2 [i.e., g1ðx; y; r; tÞ and
g2ðx; y; r; tÞ, respectively]. GEBVs for plant height are con-
strained to fall between 15 and 35. Hence, among all prog-
eny, lines 1, 6, 7, 8, 9, 12, 13, 15, 19, and 20 are not
acceptable for plant height. These progeny are distinguished
from progeny that meet the height requirements with a cross
mark. Because 10 out of 20 individuals meet the height cri-
terion, u1 and u2 are both 0.5. Finally, the penalty (D) and
penalized GEBVs for each progeny are calculated using Equa-
tions (15) and (17), respectively. Penalized GEBVs are plot-
ted as the purple bars in Figure 1.

After sorting the progenywith respect to penalized GEBVs,
wecancalculate theobjectiveu. Letusassumeg=0.90.The90th
percentile among 20 individuals is the third best individual and
according to Figure 1, line 14 is the third best individual. Hence,
we have f ¼ 21; which is the value of hðx; y; r; tÞ for line 14.

Figure 4 Penalized index selection considering different weights for TKW and EHT averaged over 100 simulation replicates for three different cases.
Each curve demonstrates the mean GEBV of individuals (represented by markers) over 10 generations for assigned weights. The transparent curves in
the background present the index selection results without penalization and the red dashed lines are the decision boundaries.
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Data availability

The authors state that all data necessary for confirming the
conclusions presented in the article are represented fully
within the article. Data are available at figshare (DOI:
10.25380/iastate.12145752).

Results

In this section,we present a case studywith real data.Without
loss of generality, two traits—total kernel weight (TKW) and
ear height (EHT)—are used in this case study. Our objective is
to maximize TKW given a constraint on EHT.

We first present the performance of ST-LASwhere the goal
is to maximize TKW only. In this way, we can observe the

behavior of EHT vs. TKW in the absence of any constraints on
EHT. Then, we investigate truncation selection on a selection
index for TKW and EHT with different choices of weights.
However, this does not allow keeping a trait within a specified
range. Hence, we define a penalized index by assigning a
negative weight on the absolute deviations from the specified
range. The penalized index is used as a benchmark against
the performance of MT-LAS. Finally, we present the MT-LAS
results and compare the effectiveness of MT-LAS to that of
the penalized index.

ST-LAS : maximizing TKW

In this section, we investigate the behavior of EHT over
10 generations when the objective is to maximize TKW and

Figure 5 (A) GEBVs of individuals over 10 generations for one simulation replicate. Optimal selection and mating decisions were made using the
MT-LAS method in all three cases. Generations are distinguished with different colors. Over multiple generations of selection, the GEBV of TKW
increases and the GEBV of EHT falls within the desired range. The red dashed lines are the decision boundaries and the arrows demonstrate the direction
for which the condition is satisfied. (B) Minimum, mean and maximum GEBVs over 10 generations averaged over 100 simulation replicates. The blue
markers in the middle of cross marks are the mean GEBVs and the end of the cross marks represent minimum and maximum GEBVs.
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there is no constraint on EHT. This will help provide reason-
able bounds for EHT when testing the MT-LAS algorithm.

Figure 2A presents the total kernal weight and ear height
GEBVs over 10 generations for a single simulation when se-
lection is only on TKW. Over 10 generations, the mean GEBV of
TKW increases from 2.78 to 40.25 with a maximum of 47.09.
For EHT, the range of GEBVs changes from [221.87,25.42] to
[21.68,14.77]. Figure 2B presents the minimum, mean, and
maximum GEBVs of both traits over 10 generations averaged
over 100 simulation replicates. On average, the GEBVs of EHT
fall in a range of [22.73, 16.54] in the final generation.

Index selection: maximizing TKW and EHT with
assigned weights

A selection index is a linear combination of traits according to
some weighting scheme. Typically, truncation selection is
applied to the index. Here, we construct an index for TKW
andEHTwhere the index is theweighted sumof theGEBVs for
each trait ðWTKWGEBVTKW þWEHTGEBVEHTÞ and truncation
selection is applied to the index. Let WTKW and WEHT be the
weights placed on the GEBVs for total kernel weight and ear
height, respectively.Weights are chosen from the real numbers
between21 and 1. It should be noted that, in this scheme, we

are selecting for larger values of both TKW and EHT. Placing a
negative weight on a trait selects for smaller values and pro-
duces progress in the opposite direction to that under strictly
positive weights. Figure 3 presents the average GEBVs over
10 generations averaged over 100 replicate simulations under
index selectionwith varyingweights, including the case where
the weight on EHT is negative.

As expected, increased weight for EHT (positive or nega-
tive) negatively impacts the efficiency of selection for TKW.
ThemeanGEBVs for both traits change in thedirection of their
assigned weights over time, indicating the lack of strong
genetic correlations between TKW and EHT. The highest
mean GEBV for TKW (34.67) is achieved by selection solely
onTKW ðWTKW ¼ 1;WEHT ¼ 0Þ: Table 1 provides theminimum,
mean, and maximum GEBVs for TKW in the final generation
under the different choices for weights. It should be noted that
the maximum GEBV for TKW achieved after 10 generations of
selection is less than that achieved using ST-LAS (36.05 vs.
44.51). This considerable impact on response is due to the fact
that the LAS focuses on maximizing the expected GEBV of the
best offspring in the terminal generation, considering uncer-
tainty in recombination in each generation, whereas trunca-
tion selection on GEBVs focuses on maximizing the genetic

Figure 6 Comparison of MT-LAS, ST-LAS and index selection methods. The mean GEBVs of population over 10 generations are averaged over
100 simulation replicates and represented for two traits. Furthermore, the minimum and maximum GEBVs in the final generation are demonstrated
using the cross marks. The green bar specifies the boundaries.
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gain in the next generation. Additionally, LAS selects pairs of
individuals as a group and recognizes the importance ofmating.

Penalized index selection: maximizing TKW with a
constraint on EHT

In this section,we reformulate the index selection to be able to
specify a desired range for the secondary trait. This enables a
direct comparison to the MT-LAS method. After applying
ST-LAS to TKW, the GEBVs for EHT in the final generation
fell between22.73 and 16.54. We subsequently investigated
three cases where EHT is constrained to fall outside this
range of variation. The three cases are as follows:

• Case 1: l ¼ 20; u ¼ 30
• Case 2: l ¼ 2 15; u ¼ 2 5
• Case 3: l ¼ 45; u ¼ þN

Similar to the use of a quadratic index to approach an opti-
mumphenotype (Kempthorne andNordskog 1959;Wilton et al.
1968), we define an index that penalizes the absolute devia-
tions from a desired range. The constructed index is formulated
as WTKWGEBVTKW 2WEHTmaxðl2GEBVEHT; 0;GEBVEHT 2 uÞ.
Weights are chosen from the real numbers between 0 and 1,
constrained to sum to unity. Figure 4 presents the average
GEBVs over 10 generations averaged over 100 replicate sim-
ulations under penalized index selection for three different

cases. These results are compared against the index selection
without penalization from Figure 3. We observe that the non-
penalized index selection cannot satisfy the EHT criterion. As
expected, over multiple generations of selection the GEBV of
TKW increases and the penalty term accommodates keeping
EHTwithin the specified range. For case 1 and case 2, the EHT
criterion is satisfiedwhenWEHT$ 0.3. However, for case 3, the
criterion cannot be satisfied even with the penalized index
selection because the bound represents an extreme case. The
behavior of case 3 is very similar to the index selectionwithout
penalization.

MT-LAS: maximizing TKW with a constraint on EHT

TheMT-LASmethod aims tomaximize genetic gain in a target
trait while ensuring that one or more secondary traits fall
within specified boundaries. Here, wemaximize TKW subject
to constraints on EHT for three different cases.

Population GEBVs over 10 generations for one simulation
replicate are presented in Figure 5A, and the average of
100 simulation replicates are presented in Figure 5B. For
cases 1 and 2, the GEBVs for EHT of �90% of the individuals
in the final generation fall within the specified boundaries.
For case 3, only a lower bound on EHT GEBV was specified.
This bound represents an extreme case where index selection
is unable to achieve the lower bound even when selecting

Figure 7 SD of total kernel weight GEBVs over time averaged for 100 simulation replicates.
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solely on EHT. However, MT-LAS is able to exceed the bound,
with �50% of the population falling into the acceptable
range.

Comparison: performance of MT-LAS against penalized
index selection

Figure 6 compares the performance of MT-LAS with the re-
sults of nonpenalized and penalized index selection using
weights that produced results satisfying the desired ranges
for three cases. We also show that ST-LAS for TKW exceeds
the performance of truncation selection on TKW alone
ðWTKW ¼ 1;WEHT ¼ 0Þ: For both cases 1 and 2, MT-LAS is
able to produce populations that surpass the performance
of the comparable index selection scenarios with respect to
TKW, and also keep almost all individuals within the speci-
fied boundaries for EHT. For case 3, the highest EHT achieved
by index selection with or without penalization cannot satisfy
the desired range criterion. However,MT-LASnot only achieves
the expected EHT, but also improves the TKW considerably.

Overall, using MT-LAS with optimization of selection and
mating decisions, and a soft penalty on EHT, improves the
response. It should be noted that the distributions of look-
ahead methods are quite different from index selection. As
shown in Figure 6 the look-ahead methods achieve wider
distributions in the terminal generation.

Figures 7 and 8 display the SD of population GEBVs over
10 generations for 100 simulation replicates and compare the
performance of MT-LAS/ST-LAS with index selection. As
expected, look-ahead methods maintain more genetic vari-
ance than index selection, indicating that there is greater
room for population improvement after 10 generations. Fur-
thermore, the genetic correlations between two traits are
presented over time for one simulation replicate, which in-
dicate the lack of strong correlation between TKW and EHT
(see Figure 9 in Appendix).

Discussion

The production of a crop variety depends on multiple char-
acteristics, such as grain quality, yield, anddrought resistance,
which are subject to different breeding objectives. In this
study, we proposed a newmulti-trait selection approach using
genomic information thatmaximizesgeneticgainwith respect
to a focal trait while controlling the variation in multiple
secondary traits.

To demonstrate the effectiveness of the proposed method,
we conducted a case study using real data where MT-LAS is
compared with index selection with varying weights. In this
case study, the goal was to maximize TKWwhile constraining
EHT.Threedifferentcaseswithvaryingboundswere investigated,

Figure 8 SD of ear height GEBVs over time averaged for 100 simulation replicates.
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and the results suggested that MT-LAS was more effective at
balancing multiple traits than index selection.

Fundamentally, the MT-LAS algorithm surpassed conven-
tional index selection because of four reasons. Thefirst reason
is the satisfiability of this method. MT-LAS automatically and
dynamically balances multiple traits and is able to optimize
selection and mating decisions in a way that satisfies the
constraints for bounded traits, while simultaneously maxi-
mizing themain trait of interest in the terminalgeneration.For
two of our three scenarios, the penalized index was able to
satisfy the constraints on the bounded trait, but at the cost of
reduced performance in the maximized trait. Moreover, with
index selection, it may not be possible to achieve some values
for the bounded traitswithoutmate selection. For example, in
case 3, we investigate the performance of MT-LAS with a
lower bound of 45, which is not reached with either nonpen-
alized or penalized index selection (Figures 3 and 4).

The second advantage of MT-LAS is its dynamic adjust-
ability. The MT-LAS method places more emphasis on fea-
sibility requirements (having individuals that meet the
thresholds for the bounded traits) when most of the individ-
uals are not predicted to fall within the bounds for the
bounded traits in the terminal generation. On the other hand,
this algorithm focuses on the main trait when most of the
individuals become acceptable for the bounded trait. Overall,
selection and mating decisions are dynamically adjusted in
every generation by making a trade off between optimizing

themain goal and reaching the desired range for the bounded
traits.

A third benefit of MT-LAS is its interpretability. By defining
the weights in terms of bounds on the desired values of the
trait,MT-LASprovides an intuitive description of the breeding
objective on the original measurement scale.

A fourth benefit of MT-LAS is its time-awareness. As op-
posed to classical index selection, which maximizes genetic
merit in thenext generation,MT-LASmaximizesgeneticmerit
in an arbitrary terminal generation. This is similar to work on
look-ahead mate selection in animal breeding (Hayes et al.
1998; Shepherd and Kinghorn 1998; Hayes et al. 2002),
where the quantity to be maximized is the genetic merit of
grand-progeny. Additionally, this shift alleviates the difficul-
ties posed by the dependence of classical nonlinear indices on
the current generationmean and intensity of selection, which
can cause such an index to be nonoptimal over multiple gen-
erations (Weller et al. 1996).

The main contribution of MT-LAS is constraints (14), (16),
and (17), which allow the algorithm to adjust the objective
function dynamically according to the progress of the current
population. Future research is needed to more fully character-
ize the MT-LAS algorithm and address the limitations of this
study. First, the current paper considers only two traits, al-
though themodel is formulated for J traits. Further simulations
to explore the behavior of the algorithm when constraining
more than one trait are desirable. Second, the hyper-parameter

Figure 9 Comparison of the population performance for MT-LAS, ST-LAS, and index selection methods over 10 generations for one simulation
replicate. The gray bars specify boundaries. Each box has three numbers including SD of population GEBVs for trait 1 and trait 2 as well as the
correlation between two traits from top to bottom, respectively.
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g plays a crucial role in identifying the optimal selection and
mating decisions. In this study, we selected g after experiment-
ing with several values. Future work is needed to design sys-
tematic methods for optimizing this parameter. Third, the
objective of the look-ahead selection relates to the final gener-
ation and future research can focus on designing new selection
methods that also consider intermediate generations in the
objective. Finally, we based our simulations on a single data
set from a single crop organism. Further simulations consider-
ing more diverse populations are necessary to demonstrate the
general applicability of MT-LAS.
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Appendix

Genetic correlations

Figure 9 demonstrates population GEBVs for one simulation replicate over 10 generations for different methods. The SD of
population GEBVs for TKWand EHT are presented over time. It is observed that, almost in every generation, the population has
higher genetic variation for both traits when selection and mating decisions are optimized using look-ahead methods. Fur-
thermore, the genetic correlations between two traits are presented over time, which shows these two traits are correlatedwith
a low degree.

Repeatability of the results

The simulations are stochastic because they model stochastic recombination events. Figure 10 (right panels) depicts the
distribution of breeding values in the final generation for 100 simulations using the same starting population but different
random seeds. The left panels provide a closer look at the first 10 simulations. As expected, there is variation around the
average performance across all simulations. The average of the first 10 simulations is similar to the average of all 100 simu-
lations, suggesting that the results are repeatable.
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