Dr. Schnable's Google Scholar Page
Export Citations
Publications (2016 ~ 2020)
Notes/Symbols Legend
* Authors contributed equally to the article
Impact Factors: 2023 Journal Citation Reports (Clarivate Analytics, June 2024)
PMID: National Center for Biotechnology Information (NCBI) Pubmed ID
2020 (11 articles)Top ⇪
-
(2020) Towards "smart canopy" sorghum: discovery of the genetic control of leaf angle across layers. Plant Physiol, 184(4): 1927-1940. doi:10.1104/pp.20.00632
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 33093232 | Impact Factor: 6.5 | 4 December 2020 ] -
(2020) Construction of a dense genetic map of the Malus fusca fire blight resistant accession MAL0045 using tunable genotyping-by-sequencing SNPs and microsatellites. Sci Rep, 10(1): 16358. doi:10.1038/s41598-020-73393-6
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 33005026 | Impact Factor: 3.8 | 1 October 2020 ] -
(2020) Leaf Angle eXtractor: A high-throughput image processing framework for leaf angle measurements in maize and sorghum. Appl Plant Sci, 8(8): e11385. doi:10.1002/aps3.11385
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 32999772 | Impact Factor: 2.7 | 10 September 2020 ] -
(2020) Multi-trait genomic selection methods for crop improvement. Genetics, 215(4): 931-945. doi:10.1534/genetics.120.303305
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 32482640 | Impact Factor: 3.3 | 5 August 2020 ] -
(2020) Increased power and accuracy of causal locus identification in time series genome-wide association in sorghum. Plant Physiol, 183(4): 1898-1909. doi:10.1104/pp.20.00277
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 32461303 | Impact Factor: 6.5 | 3 August 2020 ] -
(2020) Characterizing introgression-by-environment interactions using maize near isogenic lines. Theor Appl Genet, 133(10): 2761-2773. doi:10.1007/s00122-020-03630-z
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 32572549 | Impact Factor: 4.4 | 15 June 2020 ] -
(2020) Genomic prediction of maize microphenotypes provides insights for optimizing selection and mining diversity. Plant Biotechnol J, 18(12): 2456-2465. doi:10.1111/pbi.13420
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 32452105 | Impact Factor: 13.8 | 13 May 2020 ] -
(2020) Maize genomes to fields (G2F): 2014-2017 field seasons: genotype, phenotype, climatic, soil, and inbred ear image datasets. BMC Res Notes, 13(1): 71. doi:10.1186/s13104-020-4922-8
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 32051026 | Impact Factor: 1.6 | 12 February 2020 ] -
(2020) Relative utility of agronomic, phenological, and morphological traits for assessing genotype-by-environment interaction in maize inbreds. Crop Sci, 60(1): 62-81. doi:10.1002/csc2.20035 (One of Crop Science's top ten outstanding papers of the year in crop breeding and genetics)
-
(2020) Shared genetic control of root system architecture between Zea mays and Sorghum bicolor. Plant Physiol, 182(2): 977-991. doi:10.1104/pp.19.00752
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 31740504 | Impact Factor: 6.5 | 3 November 2019 ] -
(2020) Identification of loci controlling adaptation in Chinese soya bean landraces via a combination of conventional and bioclimatic GWAS. Plant Biotechnol J, 18(2): 389-401. doi:10.1111/pbi.13206
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 31278885 | Impact Factor: 13.8 | 6 July 2019 ]
2019 (18 articles)Top ⇪
-
(2019) Comprehensive mapping of abiotic stress inputs into the soybean circadian clock. PNAS, 116(47): 23840-23849. doi:10.1073/pnas.1708508116
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 31676549 | Impact Factor: 9.4 | 19 November 2019 ] -
(2019) A high-resolution gene expression atlas links dedicated meristem genes to key architectural traits. Genome Res, 29(12): 1962-1973. doi:10.1101/gr.250878.119
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 31744902 | Impact Factor: 6.2 | 19 November 2019 ] -
(2019) Hyppo-x: a scalable exploratory framework for analyzing complex phenomics data. IEEE/ACM Trans Comput Biol Bioinform. doi:10.1109/TCBB.2019.2947500
-
(2019) Linkage disequilibrium mapping of high-throughput image-derived descriptors of plant architecture traits under field conditions. Field Crop Res, 244: 107619. doi:10.1016/j.fcr.2019.107619
-
(2019) In-planta nitrate detection using insertable plant microsensor. IEEE Transducers & Eurosensors. doi:10.1109/transducers.2019.8808527 (2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII)
-
(2019) Novel all-solid-state soil nutrient sensor using nanocomposite of poly(3-octyl-thiophene) and molybdenum sulfate. IEEE Transducers & Eurosensors. doi:10.1109/transducers.2019.8808341 (2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII)
-
(2019) Continuous monitoring of soil nitrate using a miniature sensor with poly(3-octyl-thiophene) and molybdenum disulfide nanocomposite. ACS Appl Mater Interfaces, 11(32): 29195-29206. doi:10.1021/acsami.9b07120
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 31318522 | Impact Factor: 8.3 | 18 July 2019 ] -
(2019) Identifying loci with breeding potential across temperate and tropical adaptation via EigenGWAS and EnvGWAS. Mol Ecol, 28(15): 3544-3560. doi:10.1111/mec.15169
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 31287919 | Impact Factor: 4.5 | 9 July 2019 ] -
(2019) Optimizing selection and mating in genomic selection with a look-ahead approach: an operations research framework. G3 (Bethesda), 9(7): 2123-2133. doi:10.1534/g3.118.200842
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 31109922 | Impact Factor: 2.1 | 1 July 2019 ] -
(2019) Idea factory: the maize genomes to fields initiative. Crop Sci, 59(4): 1406-1410. doi:10.2135/cropsci2019.02.0071
-
(2019) Development of decreased-gluten wheat enabled by determination of the genetic basis of lys3a barley. Plant Physiol, 179(4): 1692-1703. doi:10.1104/pp.18.00771
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 30696748 | Impact Factor: 6.5 | 1 April 2019 ] -
(2019) Maize glossy6 is involved in cuticular wax deposition and drought tolerance. J Exp Bot, 70(12): 3089-3099. doi:10.1093/jxb/erz131
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 30919902 | Impact Factor: 5.6 | 28 March 2019 ] -
(2019) The genome of broomcorn millet. Nat Commun, 10(1): 436. doi:10.1038/s41467-019-08409-5
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 30683860 | Impact Factor: 14.7 | 25 January 2019 ] -
(2019) Semiautomated feature extraction from RGB images for sorghum panicle architecture GWAS. Plant Physiol, 179(1): 24-37. doi:10.1104/pp.18.00974
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 30389784 | Impact Factor: 6.5 | 4 January 2019 ] -
(2019) Field-based architectural traits characterisation of maize plant using time-of-flight 3D imaging. Biosyst Eng, 178: 86-101. doi:10.1016/j.biosystemseng.2018.11.005
-
(2019) Co-expression analysis aids in the identification of genes in the cuticular wax pathway in maize. Plant J, 97: 530-542. doi:10.1111/tpj.14140
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 30375131 | Impact Factor: 6.2 | 29 October 2018 ] -
(2019) Field-based robotic phenotyping of sorghum plant architecture using stereo vision. J Field Robotics, 35: 397-415. doi:10.1002/rob.21830
-
(2019) ZmMADS69 functions as a flowering activator through the ZmRap2.7-ZCN8 regulatory module and contributes to maize flowering time adaptation. New Phytol, 221(4): 2335-2347. doi:10.1111/nph.15512
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 30288760 | Impact Factor: 8.3 | 4 October 2018 ]
2018 (15 articles)Top ⇪
-
(2018) Time lapse photography for high-throughput phenotyping of corn. Iowa State University Research and Demonstration Farms Progress Reports. (This article was not peer-reviewed)
-
(2018) An automated tassel detection and trait extraction pipeline to support high-throughput field imaging of maize. ICVGIP 2018. (December 18-22, 2018. Hyderabad, India)
[ 16 November 2018 ] -
(2018) Empirical comparisons of different statistical models to identify and validate kernel row number-associated variants from structured multi-parent mapping populations of maize. G3 (Bethesda), 8(11): 3567-3575. doi:10.1534/g3.118.200636
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 30213868 | Impact Factor: 2.1 | 1 November 2018 ] -
(2018) FERONIA receptor kinase contributes to plant immunity by suppressing jasmonic acid signaling in Arabidopsis thaliana. Curr Biol, 28(20): 3316-3324. doi:10.1016/j.cub.2018.07.078
[ Abstract | Full Text PDF | PMID: 30270181 | Cited 58 Times | Impact Factor: 8.1 | 22 October 2018 ] -
(2018) Harnessing phenotypic plasticity to improve maize yields. Front Plant Sci, 9: 1377. doi:10.3389/fpls.2018.01377
-
(2018) Linked read technology for assembling large complex and polyploid genomes. BMC Genomics, 19(1): 651. doi:10.1186/s12864-018-5040-z
-
(2018) Intragenic meiotic crossovers generate novel alleles with transgressive expression levels. Mol Biol Evol, 35(11): 2762-2772. doi:10.1093/molbev/msy174
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 30184112 | Impact Factor: 11.0 | 4 September 2018 ] -
(2018) Extensive intraspecific gene order and gene structural variations between Mo17 and other maize genomes. Nat Genet, 50: 1289-1295. doi:10.1038/s41588-018-0182-0
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 30061735 | Cited 198 Times | Impact Factor: 31.7 | 30 July 2018 ] -
(2018) Maize genomes to fields: 2014 and 2015 field season genotype, phenotype, environment, and inbred ear image datasets. BMC Res Notes, 11(1): 452. doi:10.1186/s13104-018-3508-1
-
(2018) Phenotypic data from inbred parents can improve genomic prediction in pearl millet hybrids. G3 (Bethesda), 8(7): 2513-2522. doi:10.1534/g3.118.200242 (Selected as the outstanding scientific article of 2018 by ICRISAT's research program in Asia)
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 29794163 | Impact Factor: 2.1 | 1 July 2018 ] -
(2018) Exploiting the genomic diversity of rice (Oryza sativa L.): SNP-typing in 11 early-backcross introgression-breeding populations. Front Plant Sci, 9: 849. doi:10.3389/fpls.2018.00849
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 29988489 | Impact Factor: 4.1 | 22 June 2018 ] -
(2018) Transdisciplinary graduate training in predictive plant phenomics. Agronomy, 8(73). doi:10.3390/agronomy8050073
-
(2018) FarmCPUpp: Efficient large-scale genomewide association studies. Plant Direct, 2(4): e00053. doi:10.1002/pld3.53
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 31245719 | Impact Factor: 2.3 | 7 March 2018 ] -
(2018) Genotype-by-Environment interactions affecting heterosis in maize. PLoS One, 13(1): e0191321. doi:10.1371/journal.pone.0191321
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 29342221 | Impact Factor: 2.9 | 17 January 2018 ] -
(2018) Circular RNAs mediated by transposons are associated with transcriptomic and phenotypic variation in maize. New Phytol, 217(3): 1292-1306. doi:10.1111/nph.14901
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 29155438 | Cited 61 Times | Impact Factor: 8.3 | 20 November 2017 ]
2017 (10 articles)Top ⇪
-
(2017) High-resolution patterning and transferring of graphene-based nanomaterials onto tape toward roll-to-roll production of tape-based wearable sensors. Adv Mater Technol, 2(12): 1700223. doi:10.1002/admt.201700223 (Cover image ; Selected by Editors as "Best of Advanced Materials Technologies 2017" virtual issue)
-
(2017) The effect of artificial selection on phenotypic plasticity in maize. Nat Commun, 8(1): 1348. doi:10.1038/s41467-017-01450-2 (Epub 7 Nov 2017)
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 29116144 | Cited 60 Times | Impact Factor: 14.7 | 7 November 2017 ] -
(2017) Substantial contribution of genetic variation in the expression of transcription factors to phenotypic variation revealed by eRD-GWAS. Genome Biol, 18(1): 192. doi:10.1186/s13059-017-1328-6 (Epub 2017 Oct 10)
-
(2017) tGBS® genotyping-by-sequencing enables reliable genotyping of heterozygous loci. Nucleic Acids Res, 45(21): e178. doi:10.1093/nar/gkx853
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 29036322 | Impact Factor: 16.6 | 25 September 2017 ] -
(2017) Distinct genetic architectures for phenotype means and plasticities in Zea mays. Nat Plants, 3(9): 715-723. doi:10.1038/s41477-017-0007-7 (Selected by journal editors for a commentary written by Bruce Walsh (https://www.nature.com/articles/s41477-017-0012-x; Selected as an Editors' Choice by MaizeGDB, 10/2017 ; Epub 4 Sep 2017)
[ Abstract | Full Text PDF (External) | Supplemental Materials | PMID: 29150689 | Cited 51 Times | Impact Factor: 15.8 | 25 July 2017 ] -
(2017) A high-throughput, field-based phenotyping technology for tall biomass crops. Plant Physiol, 174(4): 2008-2022. doi:10.1104/pp.17.00707
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 28620124 | Cited 93 Times | Impact Factor: 6.5 | 13 June 2017 ] -
(2017) Improving response in genomic selection with a population-based selection strategy: optimal population value selection. Genetics, 206(3): 1675-1682. doi:10.1534/genetics.116.197103 (Selected by journal editors as an "Issue Highlight")
-
(2017) A comprehensive analysis of alternative splicing in paleopolyploid maize. Front Plant Sci, 8: 694. doi:10.3389/fpls.2017.00694
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 28539927 | Impact Factor: 4.1 | 18 April 2017 ] -
(2017) RD26 mediates crosstalk between drought and brassinosteroid signalling pathways. Nat Commun, 8: 14573. doi:10.1038/ncomms14573
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 28233777 | Cited 109 Times | Impact Factor: 14.7 | 24 February 2017 ] -
(2017) Identification of brassinosteroid target genes by chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) and RNA-sequencing. Methods Mol Biol, 1564: 63-79. doi:10.1007/978-1-4939-6813-8_7
2016 (4 articles)Top ⇪
-
(2016) Co-expression network analysis of duplicate genes in maize (Zea mays L.) reveals no subgenome bias. BMC Genomics, 17(1): 875. doi:10.1186/s12864-016-3194-0 (Epub 2016 Nov 4)
-
(2016) Characterization of maize roothairless6 which encodes a D-type cellulose synthase and controls the switch from bulge formation to tip growth. Sci Rep, 6: 34395. doi:10.1038/srep34395 (Selected as an Editors' Choice by MaizeGDB, 11/2016)
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 27708345 | Impact Factor: 3.8 | 6 October 2016 ] -
(2016) Genomic prediction contributing to a promising global strategy to turbocharge gene banks. Nat Plants, 2: 16150. doi:10.1038/nplants.2016.150 (Epub 2016 Oct 3)
[ Abstract | Full Text PDF (External) | Supplemental Materials | PMID: 27694945 | Cited 118 Times | Impact Factor: 15.8 | 27 August 2016 ] -
(2016) Genomewide single nucleotide polymorphism discovery in Atlantic salmon (Salmo salar): validation in wild and farmed American and European populations. Mol Ecol Resour, 16(4): 1002-1011. doi:10.1111/1755-0998.12503