Dr. Schnable's Google Scholar Page
Export Citations
Publications (2014 ~ 2024)
Notes/Symbols Legend
* Authors contributed equally to the article
Impact Factors: 2023 Journal Citation Reports (Clarivate Analytics, June 2024)
PMID: National Center for Biotechnology Information (NCBI) Pubmed ID
2024 (9 articles)Top ⇪
-
(2024) Historical increases in plant density increased vegetative maize biomass while breeding increased reproductive biomass and allocation to ear over stem. Field Crop Res, 322: 109704. doi:10.1016/j.fcr.2024.109704
-
(2024) Phenological adaptation is insufficient to offset climate change-induced yield losses in US hybrid maize. Glob Change Biol , 30(10): e17539. doi:10.1111/gcb.17539
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 39434407 | Impact Factor: 10.8 | 21 October 2024 ] -
(2024) Data-driven identification of environmental variables influencing phenotypic plasticity to facilitate breeding for future climates. New Phytol, 244(2): 618-634. doi:10.1111/nph.19937
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 39183371 | Impact Factor: 8.3 | 25 August 2024 ] -
(2024) TWAS facilitates gene-scale trait genetic dissection through gene expression, structural variations, and alternative splicing in soybean. Plant Commun, 5: 101010. doi:10.1016/j.xplc.2024.101010
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 38918950 | Impact Factor: 9.4 | 24 June 2024 ] -
(2024) ZmPTOX1, a plastid terminal oxidase, contributes to redox homeostasis during seed development and germination. Plant J, 119(1): 460-477. doi:10.1111/tpj.16776
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 38678554 | Impact Factor: 6.2 | 28 April 2024 ] -
(2024) Stalk sap nitrate test as a potential tool for nitrogen fertilizer recommendations for maize. Field Crop Res, 310: 109330. doi:10.1016/j.fcr.2024.109330
-
(2024) Genetics of canopy architecture dynamics in photoperiod-sensitive and photoperiod-insensitive sorghum. Plant Phenome J, 7(1): e20092. doi:10.1002/ppj2.20092
-
(2024) Genetic regulation of self-organizing azimuthal canopy orientations and their impacts on light interception in maize. Plant Cell, 36(5): 1600-1621. doi:10.1093/plcell/koae007
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 38252634 | Impact Factor: 10.0 | 22 January 2024 ] -
(2024) Current challenges and future of agricultural genomes to phenomes in the USA. Genome Biol, 25: 8. doi:10.1186/s13059-023-03155-w
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 38172911 | Impact Factor: 10.1 | 3 January 2024 ]
2023 (8 articles)Top ⇪
-
(2023) Maize leaf angle genetic gain is slowing down in the last decades. Crop Sci, 63(6): 3520-3533. doi:10.1002/csc2.21111
-
(2023) 3D reconstruction of plants using probabilistic voxel carving. Comput Electron Agric, 213: 108248. doi:10.1016/j.compag.2023.108248
-
(2023) A genetic tradeoff for tolerance to moderate and severe heat stress in US hybrid maize. PLoS Genet, 19(7): e1010799. doi:10.1371/journal.pgen.1010799
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 37410701 | Impact Factor: 4.0 | 6 July 2023 ] -
(2023) Harvest index has increased over the last 50 years of maize breeding. Field Crop Res, 300: 108991. doi:10.1016/j.fcr.2023.108991
-
(2023) High-throughput field plant phenotyping: a self-supervised sequential CNN method to segment overlapping plants. Plant Phenomics, 5: 0052. doi:10.34133/plantphenomics.0052
-
(2023) The 2020 derecho revealed limited overlap between maize genes associated with root lodging and root system architecture. Plant Physiol, 192(3): 2394-2403. doi:10.1093/plphys/kiad194
-
(2023) Field-based robotic leaf angle detection and characterization of maize plants using stereo vision and deep convolutional neural networks. J Field Robotics. doi:10.1002/rob.22166
-
(2023) New insights into trait introgression with the look-ahead intercrossing strategy. G3 (Bethesda), 13(4): jkad042. doi:10.1093/g3journal/jkad042
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 36821776 | Impact Factor: 2.1 | 23 February 2023 ]
2022 (4 articles)Top ⇪
-
(2022) Wearable plant sensor for in situ monitoring of volatile organic compound emissions from crops. ACS Sens, 7: 2293-2302. doi:10.1021/acssensors.2c00834
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 35939805 | Impact Factor: 8.2 | 8 August 2022 ] -
(2022) Ten simple rules to ruin a collaborative environment. PLoS Comput Biol, 18(4): e1009957. doi:10.1371/journal.pcbi.1009957
-
(2022) Maize leaf appearance rates: A synthesis from the united states corn belt. Front Plant Sci, 13: 872738. doi:10.3389/fpls.2022.872738
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 35481150 | Impact Factor: 4.1 | 5 April 2022 ] -
(2022) The Agricultural Genome to Phenome Initiative (AG2PI): creating a shared vision across crop and livestock research communities. Genome Biol, 23: 3. doi:10.1186/s13059-021-02570-1
[ Abstract | Full Text PDF (External) | Supplemental Materials | PMID: 34980221 | Impact Factor: 10.1 | 3 January 2022 ]
2021 (15 articles)Top ⇪
-
(2021) A measurement study of TVWS wireless channels in crop farms. IEEE MASS 2021, October 4-7, 2021. doi:10.1109/MASS52906.2021.00051
-
(2021) KAT4IA: K-means assisted training for image analysis of field-grown plant phenotypes. Plant Phenomics, 2021: 9805489. doi:10.34133/2021/9805489
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 34405144 | Impact Factor: 7.6 | 3 August 2021 ] -
(2021) Pheno-mapper: An interactive toolbox for the visual exploration of phenomics data. ACM BCB 2021, August 2021(20): 1-10. doi:10.1145/3459930.3469511
[ 1 August 2021 ] -
(2021) Trajectories of homoeolog-specific expression in allotetraploid Tragopogon castellanus populations of independent origins. Front Plant Sci, 12: 1165. doi:10.3389/fpls.2021.679047
-
(2021) Chromosome-level genome assembly of a regenerable maize inbred line A188. Genome Biol, 22(1): 175. doi:10.1186/s13059-021-02396-x
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 34108023 | Impact Factor: 10.1 | 9 June 2021 ] -
(2021) Meta-analysis identifies pleiotropic loci controlling phenotypic trade-offs in sorghum. Genetics, 218(3): iyab087. doi:10.1093/genetics/iyab087
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 34100945 | Impact Factor: 3.3 | 8 June 2021 ] -
(2021) Identification and utilization of genetic determinants of trait measurement errors in image-based, high-throughput phenotyping. Plant Cell, 33(8): 2562-2582. doi:10.1093/plcell/koab134
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 34015121 | Impact Factor: 10.0 | 20 May 2021 ] -
(2021) A field-deployable, wearable leaf sensor for continuous monitoring of vapor-pressure deficit. Adv Mater Technol, 6(6): 2001246. doi:10.1002/admt.202001246
-
(2021) TWAS results are complementary to and less affected by linkage disequilibrium than GWAS. Plant Physiol, 186(4): 1800-1811. doi:10.1093/plphys/kiab161
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 33823025 | Impact Factor: 6.5 | 6 April 2021 ] -
(2021) Interdisciplinary strategies to enable data-driven plant breeding in a changing climate. One Earth, 4(3): 372-383. doi:10.1016/j.oneear.2021.02.005
-
(2021) An Integrated framework reinstating the environmental dimension for GWAS and genomic selection in crops. Mol Plant, 14(6): 874-887. doi:10.1016/j.molp.2021.03.010
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 33713844 | Impact Factor: 17.1 | 9 March 2021 ] -
(2021) Utility of climatic information via combining ability models to improve genomic prediction for yield within the genomes to fields maize project. Front Genet, 11: 592769. doi:10.3389/fgene.2020.592769
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 33763106 | Impact Factor: 2.8 | 8 March 2021 ] -
(2021) Detection of the progression of anthesis in field-grown maize tassels: a case study. Plant Phenomics, 2021: 4238701. doi:10.34133/2021/4238701
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 33728412 | Impact Factor: 7.6 | 3 March 2021 ] -
(2021) Genome-wide analyses reveal footprints of divergent selection and popping-related traits in CIMMYT's maize inbred lines. J Exp Bot, 72(4): 1307-1320. doi:10.1093/jxb/eraa480
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 33070191 | Impact Factor: 5.6 | 24 February 2021 ] -
(2021) The importance of dominance and genotype-by-environment interactions on grain yield variation in a large-scale public cooperative maize experiment. G3 (Bethesda), 11(2): jkaa050. doi:10.1093/g3journal/jkaa050
2020 (11 articles)Top ⇪
-
(2020) Towards "smart canopy" sorghum: discovery of the genetic control of leaf angle across layers. Plant Physiol, 184(4): 1927-1940. doi:10.1104/pp.20.00632
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 33093232 | Impact Factor: 6.5 | 4 December 2020 ] -
(2020) Construction of a dense genetic map of the Malus fusca fire blight resistant accession MAL0045 using tunable genotyping-by-sequencing SNPs and microsatellites. Sci Rep, 10(1): 16358. doi:10.1038/s41598-020-73393-6
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 33005026 | Impact Factor: 3.8 | 1 October 2020 ] -
(2020) Leaf Angle eXtractor: A high-throughput image processing framework for leaf angle measurements in maize and sorghum. Appl Plant Sci, 8(8): e11385. doi:10.1002/aps3.11385
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 32999772 | Impact Factor: 2.7 | 10 September 2020 ] -
(2020) Multi-trait genomic selection methods for crop improvement. Genetics, 215(4): 931-945. doi:10.1534/genetics.120.303305
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 32482640 | Impact Factor: 3.3 | 5 August 2020 ] -
(2020) Increased power and accuracy of causal locus identification in time series genome-wide association in sorghum. Plant Physiol, 183(4): 1898-1909. doi:10.1104/pp.20.00277
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 32461303 | Impact Factor: 6.5 | 3 August 2020 ] -
(2020) Characterizing introgression-by-environment interactions using maize near isogenic lines. Theor Appl Genet, 133(10): 2761-2773. doi:10.1007/s00122-020-03630-z
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 32572549 | Impact Factor: 4.4 | 15 June 2020 ] -
(2020) Genomic prediction of maize microphenotypes provides insights for optimizing selection and mining diversity. Plant Biotechnol J, 18(12): 2456-2465. doi:10.1111/pbi.13420
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 32452105 | Impact Factor: 13.8 | 13 May 2020 ] -
(2020) Maize genomes to fields (G2F): 2014-2017 field seasons: genotype, phenotype, climatic, soil, and inbred ear image datasets. BMC Res Notes, 13(1): 71. doi:10.1186/s13104-020-4922-8
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 32051026 | Impact Factor: 1.6 | 12 February 2020 ] -
(2020) Relative utility of agronomic, phenological, and morphological traits for assessing genotype-by-environment interaction in maize inbreds. Crop Sci, 60(1): 62-81. doi:10.1002/csc2.20035 (One of Crop Science's top ten outstanding papers of the year in crop breeding and genetics)
-
(2020) Shared genetic control of root system architecture between Zea mays and Sorghum bicolor. Plant Physiol, 182(2): 977-991. doi:10.1104/pp.19.00752
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 31740504 | Impact Factor: 6.5 | 3 November 2019 ] -
(2020) Identification of loci controlling adaptation in Chinese soya bean landraces via a combination of conventional and bioclimatic GWAS. Plant Biotechnol J, 18(2): 389-401. doi:10.1111/pbi.13206
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 31278885 | Impact Factor: 13.8 | 6 July 2019 ]
2019 (18 articles)Top ⇪
-
(2019) A high-resolution gene expression atlas links dedicated meristem genes to key architectural traits. Genome Res, 29(12): 1962-1973. doi:10.1101/gr.250878.119
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 31744902 | Impact Factor: 6.2 | 19 November 2019 ] -
(2019) Comprehensive mapping of abiotic stress inputs into the soybean circadian clock. PNAS, 116(47): 23840-23849. doi:10.1073/pnas.1708508116
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 31676549 | Impact Factor: 9.4 | 19 November 2019 ] -
(2019) Hyppo-x: a scalable exploratory framework for analyzing complex phenomics data. IEEE/ACM Trans Comput Biol Bioinform. doi:10.1109/TCBB.2019.2947500
-
(2019) Linkage disequilibrium mapping of high-throughput image-derived descriptors of plant architecture traits under field conditions. Field Crop Res, 244: 107619. doi:10.1016/j.fcr.2019.107619
-
(2019) In-planta nitrate detection using insertable plant microsensor. IEEE Transducers & Eurosensors. doi:10.1109/transducers.2019.8808527 (2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII)
-
(2019) Novel all-solid-state soil nutrient sensor using nanocomposite of poly(3-octyl-thiophene) and molybdenum sulfate. IEEE Transducers & Eurosensors. doi:10.1109/transducers.2019.8808341 (2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII)
-
(2019) Continuous monitoring of soil nitrate using a miniature sensor with poly(3-octyl-thiophene) and molybdenum disulfide nanocomposite. ACS Appl Mater Interfaces, 11(32): 29195-29206. doi:10.1021/acsami.9b07120
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 31318522 | Impact Factor: 8.3 | 18 July 2019 ] -
(2019) Identifying loci with breeding potential across temperate and tropical adaptation via EigenGWAS and EnvGWAS. Mol Ecol, 28(15): 3544-3560. doi:10.1111/mec.15169
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 31287919 | Impact Factor: 4.5 | 9 July 2019 ] -
(2019) Optimizing selection and mating in genomic selection with a look-ahead approach: an operations research framework. G3 (Bethesda), 9(7): 2123-2133. doi:10.1534/g3.118.200842
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 31109922 | Impact Factor: 2.1 | 1 July 2019 ] -
(2019) Idea factory: the maize genomes to fields initiative. Crop Sci, 59(4): 1406-1410. doi:10.2135/cropsci2019.02.0071
-
(2019) Development of decreased-gluten wheat enabled by determination of the genetic basis of lys3a barley. Plant Physiol, 179(4): 1692-1703. doi:10.1104/pp.18.00771
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 30696748 | Impact Factor: 6.5 | 1 April 2019 ] -
(2019) Maize glossy6 is involved in cuticular wax deposition and drought tolerance. J Exp Bot, 70(12): 3089-3099. doi:10.1093/jxb/erz131
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 30919902 | Impact Factor: 5.6 | 28 March 2019 ] -
(2019) The genome of broomcorn millet. Nat Commun, 10(1): 436. doi:10.1038/s41467-019-08409-5
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 30683860 | Impact Factor: 14.7 | 25 January 2019 ] -
(2019) Semiautomated feature extraction from RGB images for sorghum panicle architecture GWAS. Plant Physiol, 179(1): 24-37. doi:10.1104/pp.18.00974
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 30389784 | Impact Factor: 6.5 | 4 January 2019 ] -
(2019) Field-based architectural traits characterisation of maize plant using time-of-flight 3D imaging. Biosyst Eng, 178: 86-101. doi:10.1016/j.biosystemseng.2018.11.005
-
(2019) Co-expression analysis aids in the identification of genes in the cuticular wax pathway in maize. Plant J, 97: 530-542. doi:10.1111/tpj.14140
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 30375131 | Impact Factor: 6.2 | 29 October 2018 ] -
(2019) Field-based robotic phenotyping of sorghum plant architecture using stereo vision. J Field Robotics, 35: 397-415. doi:10.1002/rob.21830
-
(2019) ZmMADS69 functions as a flowering activator through the ZmRap2.7-ZCN8 regulatory module and contributes to maize flowering time adaptation. New Phytol, 221(4): 2335-2347. doi:10.1111/nph.15512
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 30288760 | Impact Factor: 8.3 | 4 October 2018 ]
2018 (15 articles)Top ⇪
-
(2018) Time lapse photography for high-throughput phenotyping of corn. Iowa State University Research and Demonstration Farms Progress Reports. (This article was not peer-reviewed)
-
(2018) An automated tassel detection and trait extraction pipeline to support high-throughput field imaging of maize. ICVGIP 2018. (December 18-22, 2018. Hyderabad, India)
[ 16 November 2018 ] -
(2018) Empirical comparisons of different statistical models to identify and validate kernel row number-associated variants from structured multi-parent mapping populations of maize. G3 (Bethesda), 8(11): 3567-3575. doi:10.1534/g3.118.200636
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 30213868 | Impact Factor: 2.1 | 1 November 2018 ] -
(2018) FERONIA receptor kinase contributes to plant immunity by suppressing jasmonic acid signaling in Arabidopsis thaliana. Curr Biol, 28(20): 3316-3324. doi:10.1016/j.cub.2018.07.078
[ Abstract | Full Text PDF | PMID: 30270181 | Cited 58 Times | Impact Factor: 8.1 | 22 October 2018 ] -
(2018) Harnessing phenotypic plasticity to improve maize yields. Front Plant Sci, 9: 1377. doi:10.3389/fpls.2018.01377
-
(2018) Linked read technology for assembling large complex and polyploid genomes. BMC Genomics, 19(1): 651. doi:10.1186/s12864-018-5040-z
-
(2018) Intragenic meiotic crossovers generate novel alleles with transgressive expression levels. Mol Biol Evol, 35(11): 2762-2772. doi:10.1093/molbev/msy174
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 30184112 | Impact Factor: 11.0 | 4 September 2018 ] -
(2018) Extensive intraspecific gene order and gene structural variations between Mo17 and other maize genomes. Nat Genet, 50: 1289-1295. doi:10.1038/s41588-018-0182-0
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 30061735 | Cited 198 Times | Impact Factor: 31.7 | 30 July 2018 ] -
(2018) Maize genomes to fields: 2014 and 2015 field season genotype, phenotype, environment, and inbred ear image datasets. BMC Res Notes, 11(1): 452. doi:10.1186/s13104-018-3508-1
-
(2018) Phenotypic data from inbred parents can improve genomic prediction in pearl millet hybrids. G3 (Bethesda), 8(7): 2513-2522. doi:10.1534/g3.118.200242 (Selected as the outstanding scientific article of 2018 by ICRISAT's research program in Asia)
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 29794163 | Impact Factor: 2.1 | 1 July 2018 ] -
(2018) Exploiting the genomic diversity of rice (Oryza sativa L.): SNP-typing in 11 early-backcross introgression-breeding populations. Front Plant Sci, 9: 849. doi:10.3389/fpls.2018.00849
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 29988489 | Impact Factor: 4.1 | 22 June 2018 ] -
(2018) Transdisciplinary graduate training in predictive plant phenomics. Agronomy, 8(73). doi:10.3390/agronomy8050073
-
(2018) FarmCPUpp: Efficient large-scale genomewide association studies. Plant Direct, 2(4): e00053. doi:10.1002/pld3.53
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 31245719 | Impact Factor: 2.3 | 7 March 2018 ] -
(2018) Genotype-by-Environment interactions affecting heterosis in maize. PLoS One, 13(1): e0191321. doi:10.1371/journal.pone.0191321
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 29342221 | Impact Factor: 2.9 | 17 January 2018 ] -
(2018) Circular RNAs mediated by transposons are associated with transcriptomic and phenotypic variation in maize. New Phytol, 217(3): 1292-1306. doi:10.1111/nph.14901
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 29155438 | Cited 61 Times | Impact Factor: 8.3 | 20 November 2017 ]
2017 (10 articles)Top ⇪
-
(2017) High-resolution patterning and transferring of graphene-based nanomaterials onto tape toward roll-to-roll production of tape-based wearable sensors. Adv Mater Technol, 2(12): 1700223. doi:10.1002/admt.201700223 (Cover image ; Selected by Editors as "Best of Advanced Materials Technologies 2017" virtual issue)
-
(2017) The effect of artificial selection on phenotypic plasticity in maize. Nat Commun, 8(1): 1348. doi:10.1038/s41467-017-01450-2 (Epub 7 Nov 2017)
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 29116144 | Cited 60 Times | Impact Factor: 14.7 | 7 November 2017 ] -
(2017) Substantial contribution of genetic variation in the expression of transcription factors to phenotypic variation revealed by eRD-GWAS. Genome Biol, 18(1): 192. doi:10.1186/s13059-017-1328-6 (Epub 2017 Oct 10)
-
(2017) tGBS® genotyping-by-sequencing enables reliable genotyping of heterozygous loci. Nucleic Acids Res, 45(21): e178. doi:10.1093/nar/gkx853
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 29036322 | Impact Factor: 16.6 | 25 September 2017 ] -
(2017) Distinct genetic architectures for phenotype means and plasticities in Zea mays. Nat Plants, 3(9): 715-723. doi:10.1038/s41477-017-0007-7 (Selected by journal editors for a commentary written by Bruce Walsh (https://www.nature.com/articles/s41477-017-0012-x; Selected as an Editors' Choice by MaizeGDB, 10/2017 ; Epub 4 Sep 2017)
[ Abstract | Full Text PDF (External) | Supplemental Materials | PMID: 29150689 | Cited 51 Times | Impact Factor: 15.8 | 25 July 2017 ] -
(2017) A high-throughput, field-based phenotyping technology for tall biomass crops. Plant Physiol, 174(4): 2008-2022. doi:10.1104/pp.17.00707
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 28620124 | Cited 93 Times | Impact Factor: 6.5 | 13 June 2017 ] -
(2017) Improving response in genomic selection with a population-based selection strategy: optimal population value selection. Genetics, 206(3): 1675-1682. doi:10.1534/genetics.116.197103 (Selected by journal editors as an "Issue Highlight")
-
(2017) A comprehensive analysis of alternative splicing in paleopolyploid maize. Front Plant Sci, 8: 694. doi:10.3389/fpls.2017.00694
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 28539927 | Impact Factor: 4.1 | 18 April 2017 ] -
(2017) RD26 mediates crosstalk between drought and brassinosteroid signalling pathways. Nat Commun, 8: 14573. doi:10.1038/ncomms14573
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 28233777 | Cited 109 Times | Impact Factor: 14.7 | 24 February 2017 ] -
(2017) Identification of brassinosteroid target genes by chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) and RNA-sequencing. Methods Mol Biol, 1564: 63-79. doi:10.1007/978-1-4939-6813-8_7
2016 (4 articles)Top ⇪
-
(2016) Co-expression network analysis of duplicate genes in maize (Zea mays L.) reveals no subgenome bias. BMC Genomics, 17(1): 875. doi:10.1186/s12864-016-3194-0 (Epub 2016 Nov 4)
-
(2016) Characterization of maize roothairless6 which encodes a D-type cellulose synthase and controls the switch from bulge formation to tip growth. Sci Rep, 6: 34395. doi:10.1038/srep34395 (Selected as an Editors' Choice by MaizeGDB, 11/2016)
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 27708345 | Impact Factor: 3.8 | 6 October 2016 ] -
(2016) Genomic prediction contributing to a promising global strategy to turbocharge gene banks. Nat Plants, 2: 16150. doi:10.1038/nplants.2016.150 (Epub 2016 Oct 3)
[ Abstract | Full Text PDF (External) | Supplemental Materials | PMID: 27694945 | Cited 118 Times | Impact Factor: 15.8 | 27 August 2016 ] -
(2016) Genomewide single nucleotide polymorphism discovery in Atlantic salmon (Salmo salar): validation in wild and farmed American and European populations. Mol Ecol Resour, 16(4): 1002-1011. doi:10.1111/1755-0998.12503
2015 (6 articles)Top ⇪
-
(2015) Genetic control of morphometric diversity in the maize shoot apical meristem. Nat Commun, 6: 8974. doi:10.1038/ncomms9974 (Epub 2015 Nov 20; Selected as an Editors' Choice by MaizeGDB, 01/2016)
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 26584889 | Cited 53 Times | Impact Factor: 14.7 | 20 November 2015 ] -
(2015) Extreme-phenotype genome-wide association study (XP-GWAS): a method for identifying trait-associated variants by sequencing pools of individuals selected from a diversity panel. Plant J, 84(3): 587-596. doi:10.1111/tpj.13029 (Selected as an Editors' Choice by MaizeGDB, 11/2015)
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 26386250 | Cited 63 Times | Impact Factor: 6.2 | 23 October 2015 ] -
(2015) Fast and accurate construction of ultra-dense consensus genetic maps using evolution strategy optimization. PLoS One, 10(4): e0122485. doi:10.1371/journal.pone.0122485
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 25867943 | Impact Factor: 2.9 | 13 April 2015 ] -
(2015) Diversity of maize shoot apical meristem architecture and its relationship to plant morphology. G3 (Bethesda), 5(5): 819-827. doi:10.1534/g3.115.017541 (Early Online March 5, 2015)
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 25748433 | Impact Factor: 2.1 | 5 March 2015 ] -
(2015) ALLMAPS: robust scaffold ordering based on multiple maps. Genome Biol, 16(3). doi:10.1186/s13059-014-0573-1
[ Abstract | Full Text PDF | PMID: 25583564 | Cited 225 Times | Impact Factor: 10.1 | 13 January 2015 ] -
(2015) The maize brown midrib4 (bm4) gene encodes a functional folylpolyglutamate synthase. Plant J, 81(3): 493-504. doi:10.1111/tpj.12745
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 25495051 | Impact Factor: 6.2 | 9 January 2015 ]
2014 (8 articles)Top ⇪
-
(2014) Nonsyntenic genes drive highly dynamic complementation of gene expression in maize hybrids. Plant Cell, 26(10): 3939-3948. doi:10.1105/tpc.114.130948
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 25315323 | Cited 50 Times | Impact Factor: 10.0 | 14 October 2014 ] -
(2014) The Aux/IAA gene rum1 involved in seminal and lateral root formation controls vascular patterning in maize (Zea mays L.) primary roots. J Exp Bot, 65(17): 4919-4930. doi:10.1093/jxb/eru249
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 24928984 | Impact Factor: 5.6 | 13 June 2014 ] -
(2014) Roothairless5, which functions in maize (Zea mays L.) root hair initiation and elongation encodes a monocot-specific NADPH oxidase. Plant J, 79(5): 729-740. doi:10.1111/tpj.12578 (Selected as an Editors' Choice by MaizeGDB, 07/2014)
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 24902980 | Impact Factor: 6.2 | 28 May 2014 ] -
(2014) Genetic control of maize shoot apical meristem architecture. G3 (Bethesda), 4(7): 1327-1337. doi:10.1534/g3.114.011940
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 24855316 | Impact Factor: 2.1 | 22 May 2014 ] -
(2014) Histone lysine methyltransferase SDG8 is involved in brassinosteroid-regulated gene expression in Arabidopsis thaliana. Mol Plant, 7(8): 1303-1315. doi:10.1093/mp/ssu056
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 24838002 | Cited 51 Times | Impact Factor: 17.1 | 29 April 2014 ] -
(2014) Genome-wide discovery and characterization of maize long non-coding RNAs. Genome Biol, 15(2): R40. doi:10.1186/gb-2014-15-2-r40 (Selected as an Editors' Choice by MaizeGDB, 07/2014)
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 24576388 | Cited 330 Times | Impact Factor: 10.1 | 27 February 2014 ] -
(2014) Genome-wide analysis of regulation of gene expression and H3K9me2 distribution by JIL-1 kinase mediated histone H3S10 phosphorylation in Drosophila. Nucleic Acids Res, 42(9): 5456-5467. doi:10.1093/nar/gku173 (Epub 2014 Mar 5)
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 24598257 | Impact Factor: 16.6 | 11 February 2014 ] -
(2014) The maize brown midrib2 (bm2) gene encodes a methylenetetrahydrofolate reductase that contributes to lignin accumulation. Plant J, 77(3): 380-392. doi:10.1111/tpj.12394
[ Abstract | Full Text PDF | Supplemental Materials | PMID: 24286468 | Impact Factor: 6.2 | 10 January 2014 ]