
A Comparison of Evolved Finite State Classifiers 
and Interpolated Markov Models for Improving 

PCR Primer Design 
Daniel A. Ashlock’ Scott J. Emrich2 Kenneth M. Bryden3 Steve M. Corns3 Tsui-Jung Wen‘ Patrick S. Schnable‘ 

Abstract-This presents results on training both finite state 
classifiers and interpolated Markov models as  classifiers 
for polymerase chain reaction primers. The goal of the 
study is to find techniques to decrease the number of 
primers that fail to amplify correctly within a large 
genomics project. Standard primer design packages al- 
ready select primers in a manner consistent with current 
knowledge of the biophysics of DNA. The classifiers trained 
in this effort are used to capture lab and organism specific 
features of primer data and are used to post-process the 
output of standard primer design packages. The finite 
state classifiers in this study are trained with a novel 
evolutionary algorithm that uses an incremental fitness 
reward system and multi-population hybridization. This 
hybridization is akin to population seeding, oot the more 
usual hybridization of evolutionary computation with other 
techniques. The interpolated Markov model is a form of 
Markov model that adapts to data rich and data sparse 
portions of the training set by using a variable order in 
its modeling. The interpolated Markov models exhibited 
slightly superior perfnrmance and trains with fa r  higher 
speed. The finite state classifiers provide a substantially 
different classification, however, and require less training 
data. 

I. INTRODUCTION 
”be design of polymerase chain reaction (PCR) primers is 

a well-studied problem when considered in terms of the hio- 
physics of DNA. Software for selecting primers that amplify 
known DNA sequences is already available. This study uses 
the Primer 3 package provided in NCSA’s biology workbench. 
Designing primers, however, that not only have good biophys- 
ical properties but also take into account idiosyncratic features 
of particular organisms, labs, and technicians is a more difficult 
problem. 

Machine learning can be used to improve future overall 
efficiency of these biochemical reactions in a long-term project 
in which hundreds or thousands of PCR primers are designed 
for a single organism. Although the training data for this 
work were drawn from an ongoing maize (&a mays L., 
commonly called corn in the US.) genetic mapping project, 
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we note that it can he of equal importance in genome finishing, 
and annotation within mammalian [I91 and “gene-enriched” 
plant 161, f171 genome projects using reverse transcription- 
polymerase chain reactions (RT-PCR). An inexpensive alter- 
native to multiplexed technology like microarrays, RT-PCR 
provides a quick method for experimentally validating sub- 
sets of ab  initio gene predictions4specially those with no 
homology to other known sequences-found within complete 
and partial genomic sequences. 

This study presents and compares two different methods 
for creating project-specific post-processing tools for primer 
selection. We demonstrate that these can partially compensate 
for organism andlor lab specific factors affecting the success of 
PCR primer amplification. Effective use of these tools requires 
that sufficient primers have been experimentally validated on 
a desired organism in order to provide the necessary training 
data. With such a set of primers available, an evolutionary 
algorithm uses the success and failure data to train finite state 
classifiers (FSCs) that predict if a given primer pair will or 
will not succeed in amplification. Likewise, training data may 
be used to estimate transition probabilities for an interpolated 
Markov model. 

The training data available for an effort of this kind are noisy 
for several reasons. Perfectly good primers are sometimes 
scored as bad primers because of errors made by the technician 
or reagent suppliers. Since primers work in pairs, a good 
primer may end up being scored as a bad primer because of 
flaws in its partner. Finally, the process of scoring primers into 
the categories “worked’ and “did not work” is itself at least 
slightly subjective. The reader is assumed to be familiar with 
the process of PCR amplification, which is explained in some 
detail in [ I l l .  

A .  The Problem 
If PCR primer design is performed with state-of-the-art 

general purpose primer-selection software then what remains 
to be done? A key point is that a selected primer must not 
bind to more than one location. If it does, then unintended 
DNA may be amplified. Since most PCR attempts start with 
organismal samples, which include the entire genome of that 
organism, many potential binding locations exist for each 
primer sequence. The lengths of PCR primers are chosen such 
that it would be a shocking statistical anomaly if it occurred 
more than once at random. Evolution, however, functions in 
many cases by duplicating genetic material and then modifying 
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one copy. Because of this phenomenon, many sequences of 
arbitnry lengths will be found multiple times in a genome. 
Unless a primer design program has access to the entire 
genome sequence of an organism it cannot compensate for 
this souce of bad PCR reactions. Maize does not yet have a 
fully sequenced genome and it also contains a large number 
of transposable elements. Sometimes called “jumping genes”, 
these DNA sequences function as a kind of genetic parasite 
by copying themselves throughout the genome, and make the 
problem of long, repeated sequences a serious concern. With 
over 27k primer pairs available, machine learning can be used 
to detect such confounding sequence redundancy along with 
and other maize or lab specific factors that prevent selected 
primers from functioning nominally. 

It is important to note that the approach of  synthesizing 
multiple primers for each target so as to ensure success is 
not an optimal approach for some projects. The project to 
improve the genetic map of corn that formed to context of this 
research had far more potential targets than there was resources 
for primer synthesis. The number of target sequences mapped 
and service to the biological community are maximized by 
enhancing thc number of correct primers in the first pass of 
primer design. 

11. FINITE STATE CLASSIFIERS 

JI Start 

128 states. Transitions in these classifiers are driven by DNA 
bases, or nucleotides. Finite state machines are a standard 
representation for diverse tasks in evolutionary computation 
[4], [7], [SI, [13], [151, and Figure 1 shows a portion of such 
a machine. The states of the FSC have three possible types: ? 
(don’t know), + (good primer), and - (bad primer). These state 
labels permit the finite state machine to function as a classifier, 
though not in the usual manner, as we will see when the fitness 
function is specified below. 

For training a population of FSCs we used a collection of 
27408 PCR primer pairs, 17224 of which amplified correctly 
and 10184 of which either failed to amplify at all or apparently 
amplified multiple targets. Subsets of 500 good and bad 
primers (lo00 total) are reserved for cross validation of the 
classifiers. The fitness of an FSC on a training set of primers 
is computed as follows. Two thousand each of good and 
bad primers are selected at random from the available primer 
training data outside of the cross validation set. This selection 
is performed again in each generation of the evolutionary 
algorithm. Each member of this set of primers is then tun 
through the FSC. As the classifier passes through each state 
values from Table I are summed. These numbers represent 
complete neutrality to all factors except “it works” and “it 
doesn’t work.” Fitness for an FSC is then summed over 
the 2o00 good and Z o o 0  bad primers being used for fitness 
evaluation in a given generation. 

T 

Prim; 1 +Sta: ? 

Bad -1 1 0 
Good 1 -1 0 

This fitness function rewards the FSC incrementally after 
each state transition. Scoring FSCs on their accuracy of their 
final state and no other was attempted in a preliminary study 
and worked badly. Classifiers that refused to classify most 
primers (in which states labeled with ? formed a majority) 
were a common outcome. Our hypothesis is that the incre- 
mental reward acts to smooth the fitness landscape, in essence 
simplifying the evolutionary search problem. In addition, the 

Fig. 1. Part of a finite state classifier of the type used in this study . 
to ib transitions incremental fitness permits the FSCs to be indecisive. Large 
driven by nucleotides and has the rouowing states: ? (don’t know), + positive scores indicate a primer that the FSC classifies as 
(good primer), and. (bad primer). quite likely to work correctly, while large negative scores 

are votes of no confidence in a primer. Scores near zero, 
however, indicate either ignorance (the primer is of a type 
not encountered before) or confusion (primers with good and 
had sequence features). For selecting new primers, we chose 
the highest scoring pair that both returned positive scores. 

patterns in DNA. The e,assifier shown above 

Two key features of any evolutionary-computation-based 
machine learning system are the data structure holding the 
putative problem solutions to be evolved and the fitness func- 
tion. Our data structure is a finite state classifier with 32,64, or 
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111. INTERPOLATED MARKOV MODELS 

Markov models are useful statistical sequence models typ- 
ically used in the field of computational biology for gene 
prediction[5], although equivalent constructs have been used 
for protein and sequence classification. In any fixed-order 
Markov model, the probability of the next character is de- 
pendent only on a constant number of preceding characters. 
For example. in a 1st order model, a specific sequence x of 
length n has probability: 

" 
P(zj = P ( z d ~ ( z t l z " - l j  

1=2 

Thus, given any arbitrary Markov model and a set of 
initial probabilities, we can easily calculate the probability of 
observing an any sequence using a Markov chain as shown 
above. The power of such an approach is that we can also 
construct a null-hypothesis model to assess significance using 
a log-likelihood ratio that follows a ,yz distribution. 

Preliminaty results using fixed order Markov chains for 
primer validation were marginally successful using 5th, 6th, 
and even 7th order models on limited training sets used to 
estimate the conditional probabilities. Higher order Markov 
models, however, are better suited for sequence discrimination 
but require extensive training data since model parameters 
grow exponentially. Interpolated Markov Models ( I M M s t  
successfully used in bacterial gene prediction [5]+ffectively 
remove this limitation by utilizing multiple fixed-order mod- 
els via linear combination in order to take full advantage 
all oligonucleotide information available. This "interpolation" 
makes IMMs theoretically more powerful than fixed-order 
models since they are able to utilize higher order models when 
sufficient training exists. Such an approach should therefore 
be able to detect specific features without over-fitting other 
parameters of the model. 

IV. EXPERIMENTAL DESIGN 

A population of 600 FSCs evolved for loo0 generations 
were used when training classifiers. The FSCs are initialized 
uniformly at random, filling in both transitions and state labels 
at random. The model of evolution is single tournament se- 
lection with tournament size four. The population is randomly 
shuffled into groups of four and the two most fit FSCs repro- 
duce and replace the two least fit in each group. Reproduction 
treats the string of states in an FSC as a linear chromosome. 
The two FSCs reproducing are copied, the copies undergo 
two-point crossover. and then each copy is subjected to one 
mutation. The mutation modifies the initial state of the FSC 
10% of the time, randomly picks a new destination for one 
of the transitions 30% of the time, and modifies the label 
{+.-.?} on a state 60% of the time. During crossover the 
initial state of the FSC moves with the first state. One hundred 
simulations with distinct starting populations were performed, 
saving the best FSC from each simulation. 

The best-of-simulation FSCs are used to initialize additional 
sets of simulations which we term genetic hybridizations. For 

other instances of this type of hybridization in the context of 
evolutionary computation see [I], [2]. These simulations are 
identical to the first set except that 100 members of the initial 
random population are replaced with the best-of-tun FSCs 
from the first 100 simulations. The other members of these 
initial populations are still generated uniformly at random. 
Genetic hybridization, the cross breeding of elite genes from 
multiple populations, is distinct from the hybridization of 
evolutionary computation with other techniques. This latter 
practice is also called hybridization and we diffidently suggest 
that it be named algorithmic hybridization to distinguish it 
from the form of radical population seeding defined here. 

Our alternative statistical method for assessing primers is 
based on the following idea: if there are subtle differences 
in nucleotide composition between good and bad primers, we 
should be able to score these differences using a likelihood 
ratio calculated from the results of separate IMMs. Training 
currently uses the build-icm program of the GLIMMER2 
package to build statistical models of each primer class. The 
associated IMM scoring functions are then used to obtain the 
log-likelihood ratio score for a specific primer, given these 
two previously trained models. This slightly modified version 
of the GLIMMER2 core has been dubbed prIMMer within our 
primer selection pipeline. 

Recently funded maize genome sequencing projects may 
also offer a glimpse of the genomic features being modeled 
using these machine leaning approaches. Since available Bac- 
terial Anifical Chromosome (BAC) end sequences represent a 
relatively uniform sample [12], these sequences can be used to 
estimate the number of occurrences of these primers within the 
6040% repetitive maize genome. Potential binding locations 
of each primer were calculated using a standard sequence 
alignment algorithm, and matches that contained at most one 
difference were saved for each member of the entire set of 
over 500k BAC end sequences available. A similar analysis 
was performed against known repeats and overrepresented 
sequences within maize [6] in order to further interpret these 
results. 

V. RESULTS 

In order to get a classification of a primer as good or bad 
with a finite state classifier we count the number of +, -. or 
? states encountered as the FSC is driven by the primer. The 
classification of the primer by the FSC is the type of state 
encountered the most. The classifications on the training and 
cross validation primer data sets for the most fit classifier in 
each of the three sets of initial evolutionary runs is given in 
Table 11. The results for the hybridization runs are given in 
Table 111. 

The distribution of final best-of-run fitnesses for the initial 
sets of runs is given in Figure 2. The analogous data for the 
hybridization tuns are given in Figure 3 .  Notice that the initial 
N n S  for 32 and 64 state classifiers contain clear high-end 
outliers while the 128 state runs at least have an upward tail. 
These high end outliers provide the motivation for performing 
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TABLE II 
Predictions versus truth results for the m m  fit FSC laeated during the 

first set of simulations. 

32 States 
lh in ing  dafn cmssvnlidnhon set 

64 states 
h i n i n g  dato Cm~svnlidnhon set 

Prediction Prediction 

128 states 
Training dato Cmssvnlidnfion set 

281 176 41 

TABLE Ill 
Pmdidioos versus Vuth results for the mwt fi t FSC lusted during the 

- 
GWd 

Bad 

Gaoc 
Bad 

hybridization simulations. 

32 States 
Training doto cmssvolidnhon set 

Prediction Prediction 
+ ?  

5031 11109 584 
3873 5436 375 

Tmining &fa C.-o**",lMdiO" set 
Prediction Prediction 

64 States 

,317 8503 + ?  904 -e 
5286 3833 565 280 190 30 

Prediction 

hybridization runs. Hybridization clearly improves fitness but 
also creates substantial potential for over-training. 

Table IV shows the IMM results using log-likelihood ratios 
as the scoring criteria. Questionable primers are defined to 
have a score that is at most 0.1 in absolute value. As shown, 
prIMMer does much better leaming features of the good 
primer training set (72%) than those within the bad primer 
set (56%). Notice, however, that these numbers are better than 
those obtained from any of the hest FSC results and the initial 
number of false positives are much higher (62%) than the best 
FSCs. Further investigation shows that the average score of a 
bad primer in the cross validation set is in the questionable 
range, while the positive cross validation primers recieve a 
score of well over one on average. As expected, statistical 
analysis shows that specificity is indeed moderately correlated 
with score and as a result using the highest scoring primers 

TABLE N 
Predictions versus truth mults for prlMMer predictions using the 

s m e  datasets as the FSCs 

"mining data, C ~ ~ S " l l ~ "  set 
I Predictmn I M c t i o n  

. + ?  

can reduce the false negative rate as low as 40% which is 
comparable to that obtained using evolved FSCs. 

The same number of good and bad primers exactly matched 
at least one BAC end, although when approximate matches 
with one difference were allowed the bad primers had four 
times as many hits. Additional comparisons against a database 
of known repeats and overrepresented sequences within BAC 
ends [61 showed a similar uniform match rate, although only 
two of the matches overlapped between the two primer classes 
indicating distinct features within these sets. 

VI. DISCUSSION 
PCR-based techniques are involved in important biological 

experiments including the mapping of genes, and can be 
used in finishing, annotation and validation of whole genome 
assemblies. Machine leaming approaches offer biological 
projects that rely on the success of PCR primers to in essence 
learn from their mistakes. In our current collaborative work 
on maize genome assembly we intend to use this information 
to not only help validate the assembly but also to test the 
expression of thousands of novel cereal genes predicted within 
our latest "gene-enriched" assembly. Any improvement in 
primer design translates into more efficient annotation of these 
genes and therefore allows quick dissemination of the results 
to the plant biological community. 

The training data used in this particular study, however, were 
solely drawn from the ongoing genetic mapping project in the 
Schnable Lab at Iowa State University. Primers are used in 
pairs to amplify parts of the maize genome that exhibit size 
polymorphisms as a means of tracing the coinheritance of 
genes. Failures can result from flaws in one of the primers, in 
both, or in a mismatch between the two primers. This means 
that some of the bad primers in the training data are in fact 
primers that might work just fine with a different pmner. In 
addition, PCR reactions sometimes go awry for reasons unre- 
lated to the primers themselves. Equipment failure, operator 
failure, or incorrect or expired reagents can all invalidate a 
reaction run with what might otherwise be good primers. This 
means that our positive examples are almost all correct while 
our negative examples are partly wrong. 

The difference between fitness and performance for the 
FSCs can be seen by comparing the fitness histograms, Figures 
2 and 3 with Tables I1 and 111. The hest fitness appeared in the 
64 state hybridized classifiers but they were outperformed on 
the cross validation set by the hybridized 32 state classifiers. 
This difference may well be due to over-training and shows 
that cross validation is absolutely necessary. 
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Although using fixed-order Markov models to learn oligonu- 
cleotide properties of effective primers was not an optimal 
approach, it did uncover an interesting trend within these 
data: ineffective primers have higher information content than 
effective primers. In other words, there are more unique 
oligomers in primers determined bad than in those found to 
be good. Any statistical machine learning approach,. therefore, 
should ideally predict if a given primer will be good against 
the null hypothesis that it will not. 

There is no noticeable difference in the occurrences within a 
set maize BAC ends that should be predominantly repetitive, 
but there is a clear a bias in terms of the sequences being 
matched. One possible hypothesis-marginally supported by 
annotation of some of these repeats-is that some ineffective 
primers may correspond to transposable element families 
supposed to have been active in the recent evolutionary history 
of maize [14]. If so, these sequences may still be intact and 
have sufficient similarity that would lead to non-specific PCR 
products. These results also indicate that experimental valida- 
tion contains information that can not be currently detected 
using sequence comparison-based approaches alone. 

A. Comparison of FSCand Interpolated Markov Results 

The primary advantages of IMM-based primer validation 
are its speed and theoretical flexibility. Training an ICM using 
GLIMMER2 on 9ooo primers takes 1.6 seconds on a 2.4 GHz 
Pentium machine and subsequent scoring of 17224 putative 
primers takes under 0.5 seconds. Both training and scoring 
scale linearly with input. Training and hybridization of 100 
populations of FSCs, on the other hand. require between one 
and two days of compute time on a comparable machine. 

Although the evolution of FSCs is more time-intensive, 
it should be able to better incorporate the low information 
content of experimentally-validated primers into a FSC-based 
classifier. As multiple FSCs do not agree, they can be used 
to isolate strongly-indicative pattems within good primers. 
As such pattems should recieve high ratio scores, which are 
statistically significant. this partially explains the convergance 
of these two methods when the best log-liklihood scores are 
considered. Average log-likelihood scores and the preponder- 
ance of ? states suggest that there is indeed more oligomers 
within bad primers and therefore a larger number of states can 
be used in the FSC approach. 

B. Incremental Fitness 

The fitness function reported here for the finite state clas- 
sifiers incrementally rewards a given FSC, permitting the 
classifier to have multiple opinions in the course of processing 
a primer. This was done to compensate for poor performance 
in initial studies when the FSCs were scored only on a final 
call on each primer. It is conjectured that the effect of the 
incremental reward is to smooth the fitness surface. The shift 
of incremental fitness did have the effect of eliminating a large 
local optima in which the FSCs refused to classify many of 
the primers in the training data. 

The improvement in performance forms a post-hoc justi- 
fication of the incremental fitness function but it is the case 
that we are using the incremental fitness as a surrogate for 
our true target: correct classification. An earlier study [3] 
was performed that used incremental fitness for half of each 
of the simulation and then shifted to the ratio of correct 
to incorrect classifications. The results were intermediate in 
quality between the initial and hybridized runs reported in 
that study. Subsequent hybridization of those populations was 
not as useful, with final classification accuracy of hybridized 
populations being similar. 

The numbers in Table I used to compute incremental fitness 
were chosen to match the neutral character of the training 
data with its equal number of good and bad examples. Since 
rejecting negative primers is more important for the system's 
potential economic impact, resetting the numbers to emphasize 
correct results on bad primers is a definite next step. 

VII. CONCLUSIONS 
The primary goal of this study was to improve primer design 

performance by using machine leaming as post-processor to 
capture features of primer performance not related directly 
to the DNA biophysics already embedded in primer-selection 
packages. Both techniques tested yield improved performance. 
A study is currently undenvay to assess the impact of the FSCs 
on actual wet-lab performance and more definitive claims of 
success wait on these wet-lab results. 

The novel features of this study, aside from its main goal, 
are the use of a per-state incremental fitness function, the use 
of hybridization and the introduction of interpolated Markov 
models for this problem. 

Experimental results suggest that use of interpolation is able 
to avoid potential problems of insufficient primer training data 
that occur for higher order Markov models, while smoothing 
the fitness surface by utilizing as many equivalent FSC states 
as possible. In contrast, evolved FSCs seem to better condense 
the the unique features within these primers and provide a 
more specific classifier for strongly-indicitive patterns. We 
hypothesize that both methods can be combined in order to 
utilize the distinctive advantages of both approaches, although 
IMMs are clearly preferable given a choice between the two 
due to their speed, training flexibility, and the availability of 
a computable p-value based on the x2 distribution. 

A very clear problem with this study is the quality of the 
input data. Calls of primers as bad may result from poor 
technique in performing the amplification reaction or error 
in primer synthesis. Tbis, together with the entanglement of 
primers in pairs only one of which may in fact be bad, makes 
the classification of the training data very noisy indeed. This 
problem can only be addressed by either substantial improve- 
ments in lab technique or exceedingly expensive testing of 
bad primer pairs. To perform such testing altemative primer 
partners for each member of a bad pair would be picked and 
then amplifications performed. This latter procedure, while 
expensive and time consuming, would improve the quality of 
"bad" calls. 
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The notion of building blocks [91, [IO], sub-structures of 
members of an evolving population that can be mixed and 
matched by crossover to enhance evolutionary search, is a 
perennial topic in evolutionruy computation research. It is 
intuitive that hybridization should function well when building 
blocks are available in a representation. It is less intuitive that 
hybridization should fail in the absence of building blocks, 
as crossover with structures evolved in a different population 
might serve as a useful macro-mutation. We suggest that 
hybridization studies may be able to help identify systems in 
which building blocks exist. This is an area for future study. 

VIII. NEXT STEPS 
The clearest areas for additional work are improving the fit- 

ness function, fusing information from the Markov models and 
FSCs, and studying how to perform hybridization effectively. 

A. Improving the Fitness Function 

The opinion of a FSC after it has seen only a few nucleotides 
is probably uninformative, and many of our FSCs have numer- 
ous 7 state labels during the initial processing of PCR primers. 
Following this notion, it might improve performance to weight 
incremental rewards gained later in the processing of a primer 
higher than those gained earlier. A preliminary study of this 
technique yields mixed results, but there are many possible 
schemes for increasing the weight of any reward as time goes 

We also reported in Section VI that a preliminary study 
of shifting from incremental reward fitness to the ratio of 
correct to incorrect predications was promising, but, after 
hybridization, did not enhance final best performance. This 
preliminary study looked at only one way to shift from 
incremental reward to prediction accuracy. Since prediction 
accuracy is what we actually desire, schemes for involving 
prediction accuracy more directly in assessment of the FSCs 
merit additional study. 

At present the incremental reward for states labeled with a 
7 is zero. A small study of the results of setting the reward 
for 7 states to a small negative number substantially degraded 
performance. The logic behind that experiment was that a 
small negative score for ? states would encourage classifiers to 
make some guess about almost every primer. It did have this 
effect but the FSCs made more new bad guesses than new good 
guesses. Since some ? states are probably required early in the 
processing of a primer, it may be that such negative rewards 
should he phased in over the course of the examination of a 
primer. 

B. Cmss-technique Generalization 
The FSCs used in this study do not agree with one another 

about which primers are good or bad. Likewise, the results 
from the interpolated Markov model do not agree with any 
particular FSC. This suggests that studying schemes, such 
as majority vote, that amalgamate these opinions may be 
worthwhile. Finding good relative weights of the opinions of 
different “voters” is likely to be a thomy problem. Something 

by. 

like stacked generalization from the neural net community 
may prove valuable. Stacked generalization proceeds by first 
training several neural net classifiers with different reserved 
cross validation sets and then training an additional neural net 
to decide which of them to listen to. 

C. Understanding Genetic Hybridization 
Genetic hybridization, the seeding of a set of simulations 

with the best-of-run structures from another collection of 
simulations, can improve performance. In this study we have 
verified that hybridization improves both fitness and pre- 
diction accuracy for the PCR primer FSCs. Reference [2] 
demonstrated that hybridization helped in code induction for 
the Tartarus [I61 problem. In Reference [I], hybridization 
was critical in evolving simple optical character recognition 
systems. While we have examples that show hybridization is 
useful, we still lack the answers to at least two questions. What 
sort of problems will hybridization help with? What sorts of 
stopping and starting simulation schedules. which incorporate 
transfer of best-of-run structures to new starting populations, 
are good? 

The first question is open ended and quite difficult to answer. 
We currently lack a good taxonomy of problems and therefore 
must pile up examples. It is clear, however, that problems 
where there is a unique best answer that is easy to locate will 
not benefit from hybridization. We conjecture that if a given 
representation of solutions for a problem exhibits a high level 
of epistasis then hybridization will not help. 

The second question, that of finding effective hybridization 
schedules, is likely to have task-specific answers. It is clearthat 
if multiple hybridizations are to be performed, some evolution 
must happen before re-hybridization takes place. Hybridization 
can be viewed as a more extreme version of the selection 
technique used in “Island Genetic Algorithms” [18], and it 
would not he difficult to test different hybridization schedules 
for particular problems. This is a part of the authors ongoing 
research. 

D. Detecting Critical Pattems 

If our machine learning techniques are detecting some sys- 
tematic flaws in PCR primers that are not apparent to standard 
primer design packages, then those patterns are themselves of 
interest. We give two speculative procedures for locating and 
understanding these patterns. 

Systematic enumeration of bad patterns could be per- 
formed by tracing those paths that lead to large negative 
scores within multiple evolved FSCs or large negative 
log-likelihood scores using the Markov models. A poten- 
tial problem with such an approach, however, is that many 
of these patterns might not be good primers according 
to standard primer design software and might not even 
appear in maize (or any organism). 
A modified systematic enumeration in which known 
maize DNA sequences are fed through the predictors 
in primer-sized chunks. The aggregate score from the 
predictors are then plotted along the length of the DNA 
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to see what features receive relatively high and low 
scores. It would not be surprising if known or unknown 
transposable elements were detected in this fashion. 
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