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Abstract To extend the reach of sequencing to genomic scales,
long genomic stretches are sampled at uniform ran-

Assembly of large genomes from tens of millions of dom locations by a procedure called shotgun sequenc-
short genomic fragments is computationally demand- ing. This results in numerous short DNA fragments
ing requiring hundreds of gigabytes of memory and tens that can be sequenced using conventional techniques. If
of thousands of CPU hours. New gene-enrichment se- this procedure is directly applied to an entire genome,
quencing strategies are expected to further exacerbate it is called Whole Genome Shotgun (WGS) sequenc-
this situation. In this paper, we present a massively ing. After generating and sequencing such fragments,
parallel genome assembly framework. The unique fea- the target genome is computationally assembled from
tures of our approach include space-efficient and on- them. The primary information used during assembly
demand algorithms that consume only linear space, and is the pairwise overlaps that exist between fragments
heuristic strategies that reduce the number of expensive derived from the same region of the genome. Because
pairwise sequence alignments while maintaining assem- such overlaps could also result from fragments derived
bly quality. As part of the ongoing efforts in maize from different but repetitive parts of the genome, frag-
genome sequencing, we applied our assembly frame- ments are typically sequenced in pairs from either end
work to the largest available collection of maize ge- of longer DNA sequences (or sub-clones) of approxi-
nomic data. We report the partitioning of more than mate known length (- 5,000 nucleotides). Knowing
1.6 million fragments of over 1.25 billion nucleotides the distances between paired fragments is useful in de-
total size into genomic islands in 2 hours on 1,024 pro- tecting repeat-induced overlaps, but only for repeats
cessors of an IBM BlueGene/L supercomputer. shorter than sub-clone lengths.

Concomitant with advances in sequencing strategies

1. Introduction and the undertaking of numerous genome sequencing
projects, many genome assembly programs have been

Each cell in a living organism contains one or more developed: Arachne [3], Atlas [10], CAP3 [11], Celera
long DNA sequences called chromosomes, collectively Assembler [16], Euler [20], GigAssembler [14], PCAP
known as the genome. Contained in the genome are [12], Phrap [9], Phusion [15] and TIGR Assembler [23].
DNA sequences called genes that encode instructions Despite advances in hardware speeds and memory ca-
for producing proteins and RNA molecules, which per- pacities over the same period, assembling genomes from
form various cellular functions in an organism. Deci- the tens of millions of fragments typical of large se-
phering an entire genome sequence and identifying re- quencing projects places enormous demands on com-
gions within it that are genes and regulatory elements putational resources, with most of the run-time and
is of fundamental importance in molecular and func- memory spent in detecting and recording overlaps. It is
tional genomics. common for such work to be carried out by specialized

Genomes span multiple length scales from a few teams on workstations with tens of gigabytes of main
tens of thousands of nucleotides in viruses to millions memory using manual efforts to partition the problem,
of nucleotides in microbes to billions of nucleotides in a week or more of compute time, and disks for storing
complex eukaryotic organisms such as plants and an- intermediate results. While this should make genome
imals. The biochemical procedure of determining the assembly an ideal application for parallel processing,
nucleotide sequence of a DNA molecule is called se- most assemblers are serial and the few that take ad-
quencing. Accurate sequencing is experimentally vi- vantage of parallel processing do so in a rudimentary
able only up to hundreds of nucleotides (~ 500-1,000). fashion using multiple processors to accelerate one
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stage of the assembler that deals with computing large distributed memory computers to assemble tens of mil-
numbers of pairwise overlaps and/or manually parti- lions of fragments at a rapid pace. While this project
tioning the problem and launching multiple jobs on has just begun as of this writing, previously conducted
different processors. NSF- and DOE-funded pilot projects have produced

Shotgun sequencing has been carried out for increas- over 3.1 million gene-enriched and shotgun sequences
ingly larger sized genomes over the past two decades, that in combination total over 2.5 billion nucleotides.
starting from the -50,000 long genome of the virus Here, we report preliminary results obtained by apply-
bacteriophage A [22] to the recent sequencing of mouse, ing our framework to this data on 1,024 nodes of the
human and chimpanzee genomes that are 2.5 to over IBM BlueGene/L supercomputer. The results demon-
3 billion nucleotides long. Current targets for large- strate the effectiveness of our massively parallel frame-
scale genome sequencing include economically impor- work for the assembly of the maize genome and other
tant plant crops such as maize, sorghum, soybean and impending large-scale genome sequencing projects.
wheat. In addition to their large sizes, sequencing and
assembly of the genomes of these plants is considered 2. Related Work
particularly challenging because of the abundance of Many assemblers follow a three phase "overlap-
repeats in them. For instance, repeats are estimated layout-consensus" paradigm. The first phase is the
to span 65-80% of the maize genome, which has an es time-dominant phase, in which pairs of "significantly"
timated size of 2.5-3 billion nucleotides [2]. While the overlapping fragments are detected. The overlap be-
previously sequenced genomes contain repeats albeit tween a pair of fragments need not be an exact match
at a smaller scale, repeats in maize are much harder due to errors in sequencing and natural genetic varia
to resolve due to very high sequence identity resulting tions. The standard method for accounting these is to
from their short evolutionary history. On the other compute an optimal alignment between the fragments
hand, the genes are estimated to occupy only 10-15% using dynamic programming (Chapter 1, [1]). This
of the genome, mostly outside the repeat content [5]. takes time proportional to the product of the lengths of
To meet the goal of deciphering this relatively smaller the fragments being aligned. Given the low rate (r1-
gene space" in highly repetitive genomes, biologists 2 o e

have designed experimental techniques such as Methyl is expete to otaintlong,eact mthn regns,
Filtration in plants [21] and High-Cot sequencing [26] tu te convsis no ecssatrue.ionsa
that are expected to bias fragment sampling towards run-tie mosteasemls frt usa ter m e

gene-rich regions [17, 25]. Similar gene-enrichment se- tomet pist ave aneat matchfa seci-
quncn i ls ndrwyfo orhm 4]ad olol

to detect pairs that have an exact match of a speci-
quencing is also underway for sorghum [4] and loblolly fled length, say w, and then restrict further considera-
pine [18]. tion to only these pairs. Such pairs are identified using

Traditionally, genome assemblers are designed with a lookup table constructed for all w-length substrings
the expectation that fragments are obtained through within each fragment (Chapter 5, [1]). A downside to
uniform sampling. For n fragments, it can be argued this approach is that a long exact match of length I
that their memory and run-time requirement is 0(n) reveals itself as (I - w + 1) matches of length w; in
for uniform sampling but is 0(n2) in the worst-case for practice, there could be many overlaps with matches
non-uniform sampling or when a significant fraction of spanning hundreds of nucleotides, while w is kept as
fragments show mutual overlaps due to repeats, though small as 10 or 11 because the size of the lookup table
the effect is not as bad in practice. As a concrete illus- is exponential in w.
tration, our experiments with the CAP3 assembler on In the second phase, a layout consistent with the
a workstation with 2 GB RAM showed that just 80,000 detected overlaps is constructed. It cannot be guar-
maize fragments saturated the memory. anteed that each nucleotide in the genome is spanned

In this paper, we present the first massively parallel by one or more fragments. Therefore, the final assem-
genome assembly framework. Our approach guaran- bly typically consists of a large number of contiguous
tees a worst-case 0(n) total space complexity despite stretches called contigs interspersed by unsampled re-
gene-enrichment and repeats, and employs heuristic gions. During the third phase, contigs are constructed
strategies to significantly reduce run-time while arriv- from the layout on a consensus basis and/or by taking
ing at the same solution as any conventional assem- the available nucleotide-level sequencing quality values
bler. In November 2005, the NSF, DOE and USDA into account. The order and orientation of the con-
announced a $32M project for sequencing the maize tigs is later determined using a process called scaf5fold-
genome [19]. Our primary role in the maize genome ing. In the layout construction phase, overlaps are first
sequencing consortium is to exploit massively parallel sorted and processed in decreasing order of their qual-
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Figure 1. Illustration of our cluster-then-assemble framework. The preprocessed fragments are clus-
tered in parallel. Each resulting cluster is assembled using a serial assembler to generate contigs.

ity. Sorting entails storing all overlaps, implying a lin- and-conquer strategy that reduces the task of assem-
ear space complexity only if the fragments uniformly bling one large set of fragments to the task of first iden-
sample the target genome and their repetitive compo- tifying clusters containing genomic "neighbors" and
sition is negligible. When gene-enrichment strategies then assembling them individually. This approach has
are used on highly repetitively genomes, these assump- allowed us to focus on developing parallel methods
tions are no longer valid the gene-enriched fragments while benefiting from and not duplicating the painstak-
correspond to a non-uniform sampling over the genic ingly built-in biological expertise of current assemblers.
regions (as demonstrated in [7]), and even the small Furthermore, this allows one to generate assemblies
fraction of repetitive sequences that survive the initial consistent with what would have been generated by
screening is substantial because of their high initial fre- any conventional assembler, except that the problem
quency. Under these circumstances, the number of sig- size reach and speed of the assembler is significantly
nificantly overlapping pairs of fragments is expected to enhanced.
grow quadratically, although the effect is not as bad in Our strategy is applicable even for conventional
practice because a majority of the fragments may con- whole genome shotgun assembly. This is because gaps
tain characterized repeats which can be detected and invariably occur in sampling, or through repeat mask-
"masked" in a preprocessing step prior to assembly. ing, or owing to the difficulty in sequencing certain

regions of the genome. As a result, an initial assembly

3. Our Clustering-based Parallel Frame- is expected to consist of a large number of contigs that
are subsequently scaffolded, followed by targeted bio-

work forGenom Assemblogical experiments to fill in the gaps. As an example,
Because of selectively sampling the gene-rich por- in the human genome project [24], using whole genome

tions of the genome and repeat masking, an initial shotgun sequencing resulted in an initial assembly with
assembly of gene-enriched fragments generates a large over 221,000 contigs, and the largest contig spanned
number of contigs that correspond to the many sparsely only under 2 million nucleotides of the genome.
located "genomic islands" from which the fragments 3.1. Clustering Fragments into Genomic Is-
were originally derived [7]. Based on this observation, lands
we propose a cluster-then-assemble approach that par-
titions the input fragments into "clusters" correspond- We formulate the clustering problem as follows: Two
ing to genomic islands and then assembles the individ- fragments are said to overlap if there is a "high qual-
ual genomic islands using any serial assembler of choice. ity" alignment between a suffix of one and a prefix of
Our main contributions in space optimality, run-time the other, also known as suffix prefix alignment. Two
efficiency and parallel methodology lie in the clustering fragments are said to belong to the same cluster if and
framework. The assembly task is trivially parallelized only if they overlap or there exists a chain of overlaps
by distributing the clusters across multiple processors connecting them. Because of the transitive implica-
and running multiple instances of a serial assembler in tion, this formulation may permit two non-overlapping
parallel. The space and other limitations of these as- fragments to be clustered as illustrated in Figure 2(a).
semblers will now not be a limiting factor because of Resolving such inconsistencies is deferred until assem-
the relatively small size of each cluster. bly. An advantage of allowing transitive clustering is

This framework, illustrated in Figure 1, is a divide- the following observation: regardless of how a set of
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Figure 2. lllustratin of clustering: (a) Three fragments clustered because of transitivity despite not
sharing consistent overlaps, i.e., (fl,f2) and (f2,f3) overlap, but (fl,f3) do not overlap as depicted
by the oval and rectangular regions. Parts (b) and (c) show genomic regions (shown in thick lines)
with uniform and non-uniform sampling, respectively. In either case, a linear number of pairwise
overlaps (shown in dotted lines) is sufficient to cluster the fragments. Note that such a combination
of overlaps need not be unique.

fragments sample an underlying genomic island, there icantly reducing the chance of a pair being selected for
exists a linear number of overlapping pairs that is suffi- alignment work as the execution progresses.
cient to arrive at their clustering (see Figures 2(b) and
2(c)). While it is not possible to predict these in ad- 3.2. Generating Promising Pairs
vance, the heuristic algorithm described below reduces . . .
run-time by increasing the likelihood that such pairs generaTe sin pair u the

are identifiedearly. ~~~~generalized suffix tree (or GST; see Chapter 5 of [1])are pair f
.

f built on all input fragments and their complementaryA pair of fragments iS a promz'stng pat'r if it has a 2
maximal match1 of length no smaller than a cutoff 0. strands Complementary strands are included be
maximlustering algorithm is as follows: Let n denote the cause fragments could have been sequenced from eitherThe clustering algorithm iS as follows: Let n denote the srn ftegnmcDA o ovnec,w s
numberogenomicfragment.Intal,ec framn strand of the genomic DNA. For convenience, we use

isconumbereofgenombic fragments. bitiall, e fragmeint 'fragment' to refer to both types of sequences. A GST

pairscsredg atobed in atclusterbynon-itcreasihel roin for a set of strings is a compacted trie of all suffixes ofpairs are generated in the non-increasing (henceforth, altet n lt h
"decreasing" for convenience) order of their maximal srings, occupies space proporiona
match lengths. Each generated pair is aligned only input size. Our algorithm generates promising pairs

in the desired order without storing them; once gener-if the constituent fragments currently belong to two tedea ir cade either scarded or gneda
different clusters. If the alignment test succeeds, then
the two clusters are merged into one. Otherwise, the determined from the current clustering.

c e e i tfis Fragments are represented as strings over the alpha-
clusters are left intact, and so the alignment effort be1SA ,C } e [i eoetecaatribet E, = {A) C, G, T}. Let s[i] denote the character inconsidered wasted. The process of merging is continued position i and si denote the suffix starting from po-
until all promising pairs are considered... . sition i of string s. Positions are numbered starting atIn the above clustering scheme, the number of 1. For a node u in the GST, let path-label(u) denote
merges is no more than n - 1, though in the worst case the concatenation of edge labels along the path from
a quadratic number of pairs could be aligned before ar- root to the node and string-depth(u) denote the length
riving at the final clustering. Generating pairs based on o
maximal matches, as opposed to fixed length matches
using lookup tables, helps in two ways: (i) it limits the ation algorithm is the following: Fragments fi and fj
number of times a promising pair is generated to the share a maximal match a if and only if
number of distinct maximal matches in it, instead of Cl. 3 u such that path-label(u)= a.
the considerably larger number of fixed length matches C2. 3 k and I such that fi(k) and fj(1) are in subtree
shared by the fragments; and (ii) it provides an effec- rooted at u.
tive way to distinguish among promising pairs, in terms C3. (right maximality) If u is not a leaf, fi (k) and fj (1)
of the expected overlap quality longer the maximal are in subtrees of different children of u.
match, higher the likelihood of surviving the alignment C4
test. Therefore, processing pairs in this order is ex- . (left maximality) If k

-

1 and 1 74 1, f1[k -1] +
pected to result in early cluster merges, thereby signif- fj[1 -1].

_______________________ ~~~~2Copeetr strand of a DNA fragment is obtained by
1A "maximal match" is an exact match between two frag- reversing it and substituting A X T and C X G. DNA is a

ments that cannot be extended on either side to result in a longer double stranded molecule where the two strands are related as
match. above due to opposite directionality.
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Maximal matches can be identified by considering each suffixes of its fragments into 11]W buckets based on
node in the GST and examining pairs of suffixes in the their first w characters. The suffixes are then globally
node's subtree that satisfy C3 and C4. To generate redistributed such that those belonging to the same
maximal matches in decreasing length order, we sort bucket are in the same processor, and the number of
the nodes in GST in decreasing order of the lengths of suffixes per processor is -N. While adversarial inputp
their path-labels using radix sort, and process them in such that only one bucket contains all N suffixes can be
that order. Instead of checking C3 and C4 for each pair, easily constructed, this poses no difficulty in practice.
we generate maximal matches in amortized 0(1) time Empirically, a value of w = 11 was found appropriate
per pair as follows: For node u and c E I, let £c(u) = for maize data and for the range of processors tested
{fi(j) fi(j) is in subtree of u; j > 1; fi[j - 1] = c}, (up to 1,024 processors). This generates over 4 million
and £x(u) = {fi(l) fi(l) is in subtree of u}. These buckets, sufficient to distribute them in a load balanced
are collectively known as Isets at u. The Isets at leaves manner even for thousands of processors.
are computed directly. For an internal node u and The next phase consists of constructing for each
c E E U {A}, tc(u) = U u, tc(u') over all children u' bucket, a compacted trie of all its suffixes. Each of
of u. The Isets are maintained as linked lists to allow these represents a subtree in GST rooted at a node
constant time union operations. with string depth > w. We construct each trie in a

Consider pair generation at internal node u corre- depth-first manner as follows: Partition all suffixes in
sponding to path-label(u) as the maximal match. At the bucket into at most 1EI sub-buckets based on their
this stage, pair generation at a's children would have respective (W+ I)th characters. This is recursively ap-
been completed and their Isets are known. The set of plied for each sub-bucket by examining characters in
pairs at u are obtained by computing U tc(') x £c' (a"), subsequent positions until all suffixes are separated or
where a' and u" are two different children of u (to sat- their lengths exhausted. In the worst case, this proce-
isfy C3), and c z/ c' or c = c' = A (to satisfy C4). After dure visits all suffixes to their full lengths, resulting in
pair generation at u is finished, its Isets are computed a run-time of 0 (Nxl"), where I is the average length
from the Isets of its children. At a leaf , right maxi- /

of an input fragment. We now have a distributed rep-mality iS automatically satisfied. Hence, pairs are gen- o niptfamn.W o aeadsrbtdrpaiyiuoaialyc,ps ae g resentation of the GST as a collection of subtrees con-erated as U c(u) x £c (u), where c zc' or c =

.
= A. tamning all nodes at depth > w. The top portion of theThe above scheme generates all maximal matches

(of length > b) between each pair of fragments. This GST is not needed for pair generation.
is needed if pairwise alignment computations are an- The main challenge in this scheme is acquiring the
chored to the maximal matches. If arbitrary suffix fragments required to construct the local subtrees.
prefix alignments are computed, then it is wasteful to Storing all fragments with suffixes in local buckets
generate the same pair multiple times. In such a case, requires O (mitNpxl, N}) space in the worst case,
the algorithm can be modified to reduce the number of which is not a scalable solution. Space can be reduced
duplicate generations of the same fragment pair, while by constructing one subtree at a time, and loading all
still guaranteeing 0(1) generation time per pair [13]. fragments required for a subtree from disk prior to its
In practice, fragments contain unspecified or masked construction. Given that disk latencies are in the mil-
nucleotides, denoted by the character 'N'. Pair gener- lisecond range for random accesses as required here, we
ation algorithm is modified so that N is not part of a developed an alternative to take advantage of the high
match. We omit the details for brevity. bandwidth interconnection network of BlueGene/L.

Each processor partitions its buckets into variable-
3.3 Parallel Generalized Suffix Tree Con- sized batches, such that the fragments required to con-

struction struct all buckets in each batch would occupy ON(N)
There are no provably optimal and practically ef- space. Before constructing a batch, all fragments

ficient parallel algorithms for suffix tree construction needed for its construction are fetched through two col-
suited for distributed memory parallel computers. We lective communication steps the first to request the
developed the following algorithm that works well in processors that have the required fragments, and the
practice. Let N denote the total length of the frag- second to service the request. The processor that has
ments and p denote the number of processors. a given fragment is determined in constant time by

The first step is to sort all suffixes based on their recalling the initial distribution of the fragments. A
w-length prefixes, where w < b. Partition the frag- processor may exhaust all its batches, in which case it
ments such that each processor has Np nucleotides. continues to participate in the remaining communica-
Through a linear scan, each processor partitions the tion rounds to serve requests from other processors.
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Figure 3. Parallel run-times for constructing GST on inputs of sizes: (a) 250 million, and (b) 500
million nucleotides.

In the above communication based solution, each need to be checked against the current clustering, al-
processor receives O(ipi) characters from all other pro- located for alignment if necessary, and the alignment
cessors per communication step. However, the size of results interpreted to update the current clustering. To
the buffer used to send fragments to other processors implement these tasks in parallel, we designed an iter-
may exceed o(N ). This is because requests from differ- ative solution with one master and p - 1 worker pro-
ent processors may intersect, in the worst case over all cessors, and with responsibilities as shown in Figure 4.
of O(Ni ) local data; the likelihood of this scenario in- Initially, the master processor creates a cluster for
creases with the number of processors. We resolved this each input fragment. As the execution progresses, it
issue by implementing a customized Alltoallv, which en- updates the clusters using pairs that succeed align-
sures O( N ) size for the buffers by doing p-I sends and ment tests. Managing clusters entails two operations:
receives instead of one collective communication. finding the cluster that contains a given fragment, and
Experimental Results merging two clusters whenever an alignment succeeds.
We studied the performance of our GST construc- We use the union-find data structure that allows each

tion algorithm by varying the number of processors operation to complete with an amortized cost given by
from 256 to 1,024. Each dual-processor node of the the inverse of Ackermann's function, which is a con-
BlueGene/L system was used in co-processor mode, stant for all practical purposes.
i.e., one processor was used for computation and the The worker processors are responsible for comput-
other processor was used for communication. Exper- ing alignments, while the master processor is responsi-
iments were conducted on two subsets of the maize ble for allocating the alignments. Each promising pair
data, with sizes 250 and 500 million nucleotides that generated by a worker processor is sent to the mas-
comprised 322,009 and 649,957 fragments, respectively. ter processor, which allocates it for alignment only if
Figure 3 shows the parallel run-times and their break- the constituent fragments are in different clusters. To
down into communication and computation times, all make better use of the network bandwidth, generated
of which show linear scaling with both processor and pairs and alignment allocations are communicated in
input sizes. batches of sizes that are determined dynamically by

the master processor.
3.4. Detecting Overlaps And Managing In addition to the load balancing concerns typical

Clusters In Parallel in a single master multiple worker setup such as keep-
ing all the worker processors busy and the master pro-

Once the GST for all input fragments is constructed cessor available most of the time, our master-worker
in parallel, each processor can generate promising pairs model presents other unique challenges. The worker
from its portion of the GST using the algorithm de- processors in our model, in addition to processing the
scribed in Section 3.2. As pairs are generated, they work (by aligning pairs), also generate work (by gen-
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Figure 4. A "single master multiple workers" design for detecting overlaps and clustering in parallel,
with responsibilities designated as shown. Arrows indicate the direction of communication.

erating pairs). Thus, care must be taken that the rate queue, dispatching each batch to an "idle" processor
of work generation is neither too fast to result in a that has run out of pairs to generate. Another queue
memory overflow (because a batch of pairs needs to be of size p - 1 is used to keep track of all such idle pro-
stored until the master processor decides if they should cessors at any stage of the execution. If on exhausting
be aligned) nor too slow to result in unnecessary pro- this queue, there are still pairs in the work queue, then
cessor wait times. Moreover, as not all generated pairs the next b pairs are sent to processor Pi. With it, the
are necessarily selected for alignment, it is important to master processor also piggybacks the number of new
regulate the rate of pair generation in order to maintain pairs, say r, that it expects to receive from pi in its
a steady rate in alignment computation. Another con- next correspondence; r is analytically calculated based
cern may arise when processors start to run out of pairs on the ratio of the number of pairs received from pi in
to generate from their portion of the GST as execution the current iteration, say k, and the number of these
progresses. Not only is it necessary to keep such pro- pairs inserted into the work queue, say k' < k. It is
cessors busy computing alignments, but it is beneficial given by r Pa x min{b x TWW,, } where Pa
for the master processor to allocate pending alignment denotes the number of processors that still have pairs
computations to these processors before allocating any to generate, and W, and W, are the capacity and
to a processor that still has pairs to generate. current size of the work queue, respectively, measured

With the above goals in mind, we devised the follow- in number of pairs.
ing iterative solution, in which the master and worker
processors interact iteratively until all promising pairs Experimental Results
are generated and all alignments identified as neces- We studied the performance of our master worker
sary have been computed. In each iteration, the worker implementation on the BlueGene/L (see Figure 5).
processor generates as many new promising pairs as re- The results show a better scaling for the larger (500
quested by the master processor and sends them in a million) input than the smaller (250 million) input.
message along with the results of the latest alignments Upon increasing the number of processors from 256
it computed. While waiting for the master to reply, to 1,024, we observe relative speedups of 2.6 for the
it computes a fresh batch of alignments allocated by 250 million input and 3.1 for the 500 million input.
the master processor for the current iteration, effec- Further investigation revealed that the percentage av-
tively masking the wait time with computation. If the erage idle time for the processors increased from 16%
alignments are computed before the master processor on 256 processors to 26% on 1,024 processors on the
replies, then the worker processor resumes from its ear- 250 million input, and from 9% to 16% for the 500 mil-
lier state of pair generation and generates new pairs lion input indicating that more processors can be
until either a reply arrives or its fixed size queue in deployed while maintaining efficiency if the problem
which the pairs are stored is full. size is larger. Note that a full sequencing project will

The master processor polls for messages from other generate over 22 billion nucleotides (30 million frag-
processors. When a message arrives from processor ments each about 750 nucleotides long), on which tens
pi, it first updates the union-find data structure using of thousands of processors can be utilized with our
pairs that succeeded the alignment test, scans the scheme.
batch of newly generated pairs from Pi, and appends Figure Sb shows the number of promising pairs gen-
to a fixed size "work queue" only those pairs for which erated as a function of the input size. This figure also
computing alignments is necessary. It then repeatedly shows the effectiveness of our clustering heuristic in
extracts a fixed number of pairs, say b, from the work significantly reducing the number of alignments com-
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Figure 5. (a) Total parallel run-time for the entire clustering algorithm excluding that of GST construc-
tion. (b) The number of pairs generated, aligned, and accepted as a function of input size.

puted. For the entire maize data, which has 1,607,364 from 90% to 70% when the processor size was increased
fragments of total size 1.252 billion nucleotides, only from 256 to 1,024. Operating on multiple master pro-
about 40% of the pairs generated are aligned. How- cessors would, however, necessitate broadcasting clus-
ever, less than 1% of the pairs aligned contributed to ter merges among master processors, and the number
merging of clusters, indicating the presence of numer- of such merges may no longer be linear.
ous medium-sized (- 100) repetitive elements that sur-
vived initial screening procedures. Growth in the num- 4. Maize Genome Assembly
ber of promising pairs is a direct reflection of the ex-
pected worst-case quadratic growth in the maize data. The maize genomic data are composed of 3,124,130
The number of promising pairs generated and the rel- fragments with total length over 2.5 billion nucleotides.
ative savings in the alignment work are highly data This includes 852,838 Methyl-Filtrated (MF) [21] and
sensitive. For example, we observed that only 22% of High-Cot (HC) [26] fragments. The MF strategy is
generated pairs were aligned on a different data set. based on the elimination of bacterial colonies contain-

In our current single-master design, the master pro- ing methylated sub-clones, which are typically non-
cessor is designed to handle one request at a time. genic regions in plants. The HC strategy utilizes hy-
Messages arriving concurrently from multiple proces- bridization kinetics to enrich for lower copy sequences,
sors are therefore buffered at the MPI level on the which in case of maize are mostly genic regions. Also
master node. Message sizes can range from tens to available are fragments from WGS sequencing and an-
hundreds of kilobytes depending on the requests made other strategy called Bacterial Artificial Chromosome
by the master processor, implying that the MPI buffer (BAC) sequencing, in which long genomic sequences
at the master node can potentially overflow for larger (r150,000-200,000) are cloned in bacterial vectors, and
number of processors. To avoid message losses, our im- their ends and internal regions are individually sampled
plementation uses MPISsend that sends a message to through sequencing. A summary of the entire maize
the master processor only after a corresponding receive data is provided in the first three columns of Table 1.
has been posted. Using MPISsend, however, indicated As with any other assembler, the first step in our
a performance degradation of about 30% as opposed to framework is to "preprocess" the input fragments: raw
using MPIIsend or MPISend both on the BlueGene/L fragments obtained from sequencing strategies can be
and IBM xSeries Myrinet cluster. An alternative is contaminated with foreign DNA elements known as
to change the underlying design to allow scaling the vectors, which are removed using the program Lucy
number of master processors with processor size. This [6]. In addition, we designed a database of known and
should also drastically improve the amount of time a statistically-defined repeats [7] and screened all frag-
master processor is available to its worker processors. ments against it. The matching portions are masked
With the current single-master implementation, we ob- with special symbols such that our clustering method
served a gradual decrease in its availability (idle time) can treat them appropriately during overlap detection.
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Before Preprocessing After Preprocessing
Fragment Number of [Total length Number of 1 Total length
Type Fragments [(in millions) Fragments j (in millions)]

r MF 411,654 335 349,950 288
HC 441,184 357 427,276 348
BAC 1,132,295 964 425,011 307
WGS 1,138,997 870 405,127 309
Total 3,124,130 2,526 1,607,364 1,252

Table 1. Maize genomic fragment data types and size statistics: Methyl-filtrated (MF), High-Cot (HC),
Bacterial Artificial Chromosome (BAC) derived, and Whole Genome Shotgun (WGS).

The last two columns in Table 1 show the results of tigs is about 268 million nucleotides, which is roughly
preprocessing the data using our repeat masking and 10% of the entire maize genome. Upon validation us-
vector screening procedures. As expected, preprocess- ing independent gene finding techniques, we confirmed
ing invalidates a significant number of shotgun frag- that our contigs span a significant portion (, 96%)
ments (~ 60-65%) because of repeats, while most of of the estimated gene space [8]. The average num-
the fragments resulting from gene-enrichment strate- ber of input fragments per contig is 6.55, while the
gies are preserved. An efficient masking procedure maximum is 2,435. To more accurately assess non-
is important because unmasked repeats cause spuri- uniformity within these data, coverage throughout the
ous overlaps that cannot be resolved in the absence of entire maize assembly was analyzed. The mean cov-
paired fragments spanning multiple length scales. Fur- erage of 3.24 was larger than the expected 1.0 cov-
thermore, it provides a computational means to prefer- erage provided in the input. Moreover, 1.34 million
entially assemble non-repetitive regions of the genome nucleotides of this assembly have sequence coverage of
that may be gene-enriched. 25 or higher and may correspond to unmasked repeats

The results of applying our parallel genome as- and/or biases from the gene-enrichment approach. The
sembly framework on the entire maize data is as fol- results of our assembly can be graphically viewed at
lows: Preprocessing the 3,124,130 fragments down- http://www.plantgenomics.jastate.edu/maize. For fur-
loaded from GenBank took 1 hour by trivially par- ther biological details on our on-going effort to assem-
allelizing on 40 processors of an IBM xSeries cluster ble the maize genome and a thorough discussion of the
with 1.1 GHz Pentium III processors and 1GB RAM results on an earlier version of maize data with less
per processor. Our clustering method partitioned the than a million fragments, see [8].
resulting 1,607,364 fragments (over 1.25 billion nu-
cleotides) in 102 minutes on 1,024 nodes of the Blue- 5. Conclusions
Gene/L, with the GST construction taking only the
first 13 minutes. We used CAP3 [11] for assembling We presented the design and development of an effi-
the fragments in each resulting cluster. This assembly cient clustering-based framework for genome assembly
step finished in 8.5 hours on 40 processors of the IBM on massively parallel distributed memory machines us-
xSeries cluster through trivial parallelization. ing gene-enriched fragments, and reported its applica-

Our assembly resulted in a total of 163,390 maize tion on the largest publicly available maize genomic
genomic islands (or contigs) formed by two or more data using the BlueGene/L supercomputer. The re-
input fragments, and 536,377 singletons. Singletons sults of our assembly are publicly available, and are
are fragments that do not assemble with any other being frequently used by many plant scientists. Ex-
fragment because of sharing no overlap and/or hav- periments indicate that the run-time behavior of our
ing a high repetitive content that was masked dur- clustering solution shows good scaling. Our key contri-
ing preprocessing. On an average, each cluster assem- butions in space-optimality and a heuristic-based clus-
bled into 1.1 contigs; given that the CAP3 assembly tering scheme to significantly reduce alignment compu-
is performed with a higher stringency, this result in- tations will play a crucial role in the large-scale appli-
dicates the high specificity of our clustering method cability of our framework in the context of the maize
and its usefulness in breaking the large assembly prob- genome and many other complex genomes of econom-
lem into disjoint pieces of easily manageable sizes for ically important plant crops. To give a perspective
conventional assemblers. The overall size of our con- our current implementation requires 80 bytes for every
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input nucleotide, implying that we can scale up to - 8 [11] X. Huang and A. Madan. CAP3: A DNA sequence
million fragments for every 1,024 BlueGene/L nodes assembly program. Genome Research, 9(9):868-877,
(each with 512 MB). This would enable us to cluster 1999.
30 million fragments on 4K nodes. Moreover, we [12] X. Huang, J. Wang, S. Aluru et al. PCAP: A
conducted a few preliminary experiments on 8K nodes whole-genome assembly program. Genome Research,
and the scaling results are encouraging. We believe 13(9):2164-2170, 2003.
that a continued improvement of our algorithmic tech- [13] A. Kalyanaraman, S. Aluru, V. Brendel, and
niques on large-scale parallel computers such as the S. Kothari. Space and time efficient parallel algorithms
BlueGene/L will provide a robust and efficient plat- and software for EST clustering. IEEE Transactions
form for many impending large-scale genome projects on Parallel and Distributed Systems, 14(12):1209-1221,
such as for sorghum and pine, which also involve gene- 003
enrichment sequencing. [14] W.J. Kent and D. Haussler. GigAssembler: an algo-

rithm for initial assembly of the human working draft.
Genome Research, 11(9):1541-1548, 2001.
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