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Abstract

Five ab initio programs (FGENESH, GeneMark.hmm, GENSCAN, GlimmerR and Grail) were evaluated
for their accuracy in predicting maize genes. Two of these programs, GeneMark.hmm and GENSCAN had
been trained for maize; FGENESH had been trained for monocots (including maize), and the others had
been trained for rice or Arabidopsis. Initial evaluations were conducted using eight maize genes (gl8a, pdc2,
pdc3, rf2c, rf2d, rf2el, rthl, and rth3) of which the sequences were not released to the public prior to
conducting this evaluation. The significant advantage of this data set for this evaluation is that these genes
could not have been included in the training sets of the prediction programs. FGENESH yielded the most
accurate and GeneMark.hmm the second most accurate predictions. The five programs were used in
conjunction with RT-PCR to identify and establish the structures of two new genes in the a/-sh2 interval of
the maize genome. FGENESH, GeneMark.hmm and GENSCAN were tested on a larger data set con-
sisting of maize assembled genomic islands (MAGIs) that had been aligned to ESTs. FGENESH, Gene-
Mark.hmm and GENSCAN correctly predicted gene models in 773, 625, and 371 MAGTISs, respectively, out
of the 1353 MAGTIs that comprise data set 2.

Abbreviations: AE, actual exon; CC, correlation coefficient; FN, false negative; FP, false positive; GSSs,
genome survey sequences; HC, high C.t; MAGIs, maize assembled genomic islands; ME, missing exon;
MF, methylation filtration; OE, overlapped exon; PE, partial exon; RACE, Rapid Amplification of cDNA
Ends; SN, sensitivity; SP, specificity; TE, true exon; TP, true positive; WE, wrong exon.

Introduction phering the functions of a sequenced genome. Two

approaches are available (reviewed by Stormo,
Locating the positions of all the genes and deter- 2000; Mathé et al., 2002; Pertea and Salzberg,
mining their structures is a first step toward deci- 2002). The first is based on sequence similarity. A
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significant degree of sequence identity or similarity
between a genomic query sequence and cDNA,
EST, protein or genomic sequences of a gene from
the same or another species can provide evidence
that a query sequence contains a gene. This
method is, however, highly dependent upon the
quantity and quality of pre-existing sequence data.
Typically only 50-70% of the genes in a sequenced
genome can be found via comparisons to other
genomes, although this fraction will increase as the
number of sequenced genomes increases (reviewed
by Mathé et al., 2002; Pertea and Salzberg, 2002).
In addition, sequence similarity searches can pro-
vide misleading information due to artifacts in
databases. The second approach for identifying
genes in a sequenced genome is to use ab initio
gene prediction programs. Ab initio gene predic-
tion uses statistical and computational methods to
detect coding regions, splice sites, and start and
stop codons in genomic sequences. This approach
does not depend on sequence similarity and is
therefore not limited by the availability of
sequence data. But as compared to predictions
based on sequence similarity, ab initio predictions
are currently typically less accurate because avail-
able programs are not yet able to make highly
reliable predictions of gene structures. One reason
for this is that the quality of predictions is limited
by the quality of the training sets. These training
sets usually consist of gene sequences that have
been characterized in a given species.

To date only two plant genomes, Arabidopsis
(The Arabidopsis Genome Initiative, 2000) and
rice (Goff et al., 2002; Yu et al., 2002), have been

Table 1. Evaluated gene prediction programs.

completely sequenced. Efforts to sequence other
crop genomes, including maize, are underway
(http://www.nsf.gov/bio/pubs/awards/genome02.htm)
(Palmer et al., 2003; Whitelaw et al., 2003). The
maize genome consists of about 2400 Mb, i.e.,
approximately 6-fold larger than that of rice (re-
viewed by Moore, 2000). It is estimated that the
maize genome contains approximately 50,000
genes that account for only 10-15% of the genome
(Bennetzen et al., 2001). Much of the genome is
repetitive elements, many of which are retro-
transposons (SanMiguel et al., 1996). Due to the
large size and highly repetitive nature of the maize
genome, sequencing efforts are being focused on
the gene-rich, low-copy fraction of the genome,
i.e., the ‘gene space’. Two methods are being used
to isolate the ‘gene space’, methylation-filtration
(MF) (Rabinowicz et al., 1999) and high C,t (HC)
selection (Peterson et al., 2002; Yuan et al., 2003).

The identification of genes from sequences gen-
erated from the maize genome sequencing project
will establish whether the current sequencing ap-
proaches are successfully enriching for genes, and
will, in addition, define genomic resources neces-
sary to study the function of maize. Given the
limitations associated with gene prediction based on
sequence similarity, ab initio gene prediction pro-
grams will necessarily play an important role in
maize gene discovery. In an effort to develop an ab
initio gene discovery strategy for maize, existing
versions of five programs (Table 1) including
FGENESH (Salamov and Solovyev, 2000), Gene-
Mark.hmm (Lukashin and Borodovsky, 1998),
GENSCAN (version 1.0) (Burge and Karlin, 1997),

Programs Websites Trained Type of prediction Algorithm
organisms models
Splice site Exon  Gene model

FGENESH http://www.softberry.com/ Monocots Yes Yes Yes GHMM?
berry.phtml?topic = fgenesh&group =
programs&subgroup = gfind

GeneMark.hmm  http://opal.biology.gatech.edu/ Maize Yes Yes Yes GHMM
GeneMark/eukhmm.cgi?org = H.sapiens

GENSCAN http://genes.mit.edu/GENSCAN.html Maize Yes Yes Yes GHMM

GlimmerR http://www.tigr.org/tdb/glimmerm/ Rice Yes Yes Yes IMM®
glmr_form.html

Grail http://compbio.ornl.gov/Grail-1.3/ Arabidopsis  Yes Yes No neural networks

*GHMM, Generalized Hidden Markov Model.
°IMM, Interpolated Markov Model.



GlimmerR (Salzberg et al., 1999; Yuan et al., 2001)
and Grail (version 1.3) (Xu and Uberbacher, 1997)
were evaluated for their accuracy in predicting
maize genes. The purpose of this study was to
evaluate currently available tools for suitability in
the ab initio discovery of genes from partial maize
genomic sequences rather than to compare the
algorithms that underlie these tools. Maize-trained
versions of three of these programs, FGENESH,
GeneMark.hmm and GENSCAN, are available.
For the remaining programs versions that had been
trained using rice (GlimmerR) or Arabidopsis
(Grail) were used. Each program was evaluated
using a data set consisting of genomic sequences of
eight genes cloned by us (Table 2). Because these
gene sequences could not have been included in the
data sets used to train the ab initio programs, they
represent a valuable tool for evaluating these pro-
grams. These five programs were also used to help
identify and determine the structures of two genes
in the 140-kb maize al-sh2 interval (Civardi et al.,
1994; Yao et al., 2002). FGENESH, followed by
GeneMark.hmm and GENSCAN made more
accurate gene predictions in these tests. Their ability
to predict maize genes was further tested using a
larger data set (1353 genic sequences) consisting of
maize assembled genomic islands (MAGIs) assem-
bled from genome survey sequences (GSSs) whose
exons were identified via alignments to ESTs. In
this larger data set, FGENESH was still the most
accurate program.

Table 2. Members and characteristics of data set 1.
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Materials and methods
Data sets

Two data sets were used to evaluate the accuracy
of gene prediction programs.

Data set 1: The genomic sequences of eight maize
genes (gl8a, pdc2, pdc3, rf2c, rf2d, rf2el, rthl, and
rth3) that were cloned in our lab but that had
not been released to the public prior to the com-
pletion of this evaluation constitute data set 1.
With the exception of rf2d that is incomplete at its
5" end, all of these genic sequences contain the
corresponding start and stop codons. The Gen-
Bank accession numbers of each gene sequence
are listed in Table 2. Their gene structures were
determined by spliced alignment of full-length
cDNA sequences to the corresponding genomic
sequences using the GeneSeqer program (http://
bioinformatics.iastate.edu/cgi-bin/gs.cgi) (Usuka
et al., 2000; Usuka and Brendel, 2000; Brendel
et al., 2004). To make a fair comparison of the
predictions among genes in this data set, genomic
sequences that contain complete genes were trim-
med at their 5 and 3" ends. The incomplete r/2d
genomic sequence was only trimmed at the 3 end.
Consequently, in this data set, the amount of
sequence before the start codon of each gene is
520 bp and after the stop codon is 375 bp. The
statistical characteristics of each gene in data set 1
are listed in Table 2.

Genes  GenBank accession (G+C)% of Input sequence #DP® #A® #Exons Exon length (bp) Intron length (bp)
numbers Gene? length (bp)
Min Max Average Min Max Average
gl8a AF302098 50.0 3288 2 2 3 70 653 327 583 829 706
pdc2 AF370004 51.2 3974 5 5 6 118 651 297 82 691 259
pdc3 AF370006 54.1 3477 5 5 6 118 651 304 77 391 152
rf2c¢ AF348412 56.1 4527 6 6 7 62 648 216 70 1604 354
24 AF348414 54.9 2940 6 7 7 62 474 200 72 123 96
rf2el  AY374447 54.3 4673 9 9 10 69 237 134 75 1080 271
rthl AY265854 399 13621 24 24 25 65 174 107 80 1705 419
rth3 AY265855 61.5 2899 0 0 1 2004 2004 2004 NA® NA NA
Overall 48.8 39399 57 58 65 62 2004 208 70 1705 327

“Begins with the start codon and ends with the stop codon.
®4D. number of donor sites.
“#A, number of acceptor sites.

9The rf2d gene sequence is partial in the 5" end. The first intron is partial and was not included for analysis of intron length here
although the A site of this intron is included for counting the #A.

°NA, Not applicable.
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Data set 2: Data set 2 consists of a subset of the
114,173 ISU MAGIs in version 3.1b (http://
plantgenomics.iastate.edu/maize). These MAGIs
were assembled from 879,523 GSSs (MF and HC
sequences) of the maize inbred line B73 using a
strategy similar to that described by Emrich et al.
(2004) (see Supplementary Materials). MAGIs to
include in data set 2 were selected based on the
qualities of their GeneSeqer alignments to clustered
B73 ESTs generated by Schnable Lab. Detailed
methods used to generate data set 2 are provided in
the Supplementary Materials. In summary, data set
2 consists of 1353 selected MAGI contigs that
contain at least one pair of reliable donor and
acceptor sites flanking an intact intron (Figure 3).
The statistical characteristics of data set 2 are
shown in Figure 1.

Statistical comparison of data set 1 to 74
structure-known genes of maize

The GC contents and lengths of internal exons and
introns in data set 1 were compared to those in a
data set consisting of 74 structure-known maize
genes. The GC contents and lengths of the exons

(A) %GC of Exons
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and introns of the 74 structure-known maize genes
were calculated by parsing the exons and introns
from the sequences that were downloaded from
NCBI. Only complete internal exons and introns
were used in this analysis. The length of each
internal exon and intron was determined and then
the number of G’s and C’s were counted and
divided by the total length to determine the per-
cent GC content. Similar calculations were con-
ducted for sequences in data set 1. The two-sample
Kolmogorov—Smirnov test (Kolmogorov, 1933;
Smirnov, 1939), which tests the null hypothesis
that the data values from two samples have the
same continuous distribution, was used to com-
pare these parameters.

Programs evaluated

Five ab initio programs were evaluated using data
set 1. The features of these programs are listed in
Table 1. Available versions of FGENESH, Gene-
Mark.hmm and GENSCAN (version 1.0) that had
been trained for maize were evaluated. For those
two programs for which a maize trained version was
not available, the version trained for the closest
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Figure 1. The GC contents and lengths of exons and introns in data sets 1, 2 and structure-known genes. Only internal exons were
analyzed in data set 1 and the structure-known genes. The percentages of exons (panel A) and introns (panel B) with the indicated GC
contents (bin sizes = 5 percentage points) in each of three data sets are indicated. The percentages of exons (panel C) and introns (panel
D) with the indicated lengths (bins sizes = 50 bp) in each of three data sets are also indicated. Data set 1, structure-known genes, and
data set 2, are indicated by horizontal stripes, dark gray fill and diagonal stripes respectively.



organism to maize was evaluated. Although all five
programs make predictions in both strands of a
genomic DNA sequence, only the predictions for
the strand containing known genic sequences were
analyzed in this study because they could be
compared with the known actual gene structures
or splice sites in our test data sets 1 and 2.
FGENESH, GeneMark.hmm, GENSCAN and
GlimmerR predict gene models that can be single or
multiplein a genomic sequence and a predicted exon
is indicted as initial (starting with the initiation co-
don and ending with a donor site), internal (starting
with an acceptor site and ending with a donor site),
terminal (starting with an acceptor site and ending
with the stop codon) or single (starting with the
initiation codon and ending with the stop codon)
exon in the output. Grail predicts a series of non-
overlapping exons in both DNA strands but no gene
model is produced. All programs were run via their
websites by using their organism-specific default
parameters to obtain the prediction results for data
set 1 (Table 1). To obtain predictions for data set 2,
FGENESH, GeneMark.hmm and GEN-SCAN
were run locally using the default parameters for
monocot sequences (including maize) with usage
of the GC donor site (FGENESH) or using the
default parameters for maize sequences (Gene-
Mark.hmm and GENSCAN). Additional infor-
mation is provided in the Supplementary
Materials. Programs for prediction of splice site
only such as SplicePredictor (Brendel et al., 2004),
NetGene2 (Hebsgaard et al., 1996; Tolstrup et al.,
1997) and GeneSplicer (Pertea et al., 2001) were
not evaluated in this study because they do not
predict exons and/or gene models.

Evaluation of gene prediction programs

The performance of each program was evaluated
at three levels (splice site, nucleotide and exon) as
described by Burset and Guigo (1996) and Pavy
et al. (1999).

At the splice site level, the accuracy of a pro-
gram’s predictions is measured by SN (sensitivity),
SP (specificity) and the average of SN and SP
((SN + SP)/2). If true positive (TP) is defined as
the number of correctly predicted splice sites, false
positive (FP) as the number of incorrectly predicted
splice sites, and false negative (FN) as the number
of actual splice sites missed in the prediction, then
SN = TP/(TP + FN) and SP = TP/(TP + FP).
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Since neither SN nor SP alone can represent the
accuracy of a program, the value of (SN + SP)/2is
usually used as a measure of accuracy.

SN and SP are also used to evaluate predictions
at the nucleotide level. Here TP is the number of
nucleotides that are correctly predicted as coding,
TN is the number of nucleotides that are cor-
rectly predicted as non-coding, FP is the number
of nucleotides that are incorrectly predicted as
coding, and FN is the number of nucleotides that
are incorrectly predicted as non-coding. Under
these definitions, SN = TP/(TP + FN), SP = TP/
(TP + FP). The value of the correlation coefficient
(CC) that reflects both SN and SP is used for
evaluation. CC is defined as:

CC=((TPx TN)— (FN x FP))/((TP+FN)
x (TN+FP) x (TP+FP) x (TN+FN))'/2.

At the exon level, if AE is defined as the actual
exons, TE as the correctly predicted exons, PE as
the predicted exons that are partially correct (i.e.,
only one boundary correct), OE as the predicted
exons that overlap with the actual exons but with
both boundaries wrong, ME as the actual exons
missed in the prediction, WE as the number of
incorrectly predicted exons, then SN = TE/AE,
SP = TE/TE + PE + OE + WE), PE% = 100 x
PE/(TE + PE + OE + WE), OE% = 100 x OE/
(TE + PE + OE + WE), ME% = 100 x ME/AE,
and WE% = 100 x WE/(TE + PE + OE + WE).
These values above as well as the average of SN
and SP are used to measure the accuracy of a
program.

RT-PCR and ¢cDNA library screen to identify
the yzl gene

The five ab initio programs evaluated in this study
predicted a gene, yz/, in the maize al-sh2 interval.
To confirm this gene prediction and to determine
the actual structure of this gene, RT-PCR experi-
ments were conducted and maize cDNA libraries
were screened. SuperScript™ First-Strand Synthesis
System for RT-PCR (Invitrogen, Carlsbad, CA)
was used to obtain first-strand cDNA from total
RNA. The sequences of oligonucleotides used as
primers in the subsequent PCR are: YZ4b (5'-
GAGATGATGTCCCTTGTG-3) and ZH2587
(5-GCCTGGTTAGCGAAGTTG-3). RT-PCR
amplification using these two primers revealed a
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681-bp fragment in maize RNA isolated from
different organs, including husk, tassel, silk, adult
leaf, ear and seedling (data not shown). The se-
quence of this RT-PCR fragment is identical to the
predicted yz/ exons and the predicted introns were
missing from the RT-PCR product.

This RT-PCR product was used as a probe to
screen maize cDNA libraries. A cross-hybridizing
clone with a 2.1-kb insert was identified from a
library prepared from seedlings of the inbred
CI31A. Sequence analysis of this clone demon-
strated that it is chimeric, with only 1.4-kb derived
from the yz/. Sequence analysis of this cDNA
clone, as well as 3’- and 5’- Rapid Amplification of
cDNA Ends (RACE) (Invitrogen, Carlsbad, CA)
experiments, suggested that this 1.4-kb sequence is
full-length or nearly full-length.

Results

Evaluation of gene prediction programs for maize
gene discovery

Five ab initio gene prediction programs (Table 1)
were evaluated for their ability to predict maize
genes from genomic sequences. The purpose of this
evaluation was to help biologists select a strategy
for the ab initio discovery of maize genes from
partial genomic sequences using currently avail-
able tools. Hence, this evaluation did not seek to
evaluate the algorithms per se upon which the gene
prediction tools are based. Of the five evaluated
gene prediction programs, Grail predicts splice
sites and exons but not gene models; the remaining
four programs predict gene models as well as
exons and splice sites. Most of the programs had
been previously trained using monocots (e.g.,
maize and/or rice), but Grail was trained using
Arabidopsis. Evaluations were conducted using a
data set (data set 1) consisting of eight maize

genomic gene sequences (Table 2) that could not
have been included in the data sets used to train
any of the five prediction programs because these
sequences were released from GenBank only after
the evaluation of the gene prediction programs
had been completed.

Seven of the gene sequences are full-length; one
(rf2d) is partial. The GC contents of the genes
(from start to stop codons) in data set 1 range
from 39.9% to 61.5% with an average of 48.8%.
The lengths of these gene sequences range from
2899 to 13,621 bp (Table 2). There are 65 exons in
this data set with one to 25 exons per gene. Exon
lengths range from 62 to 2004 bp with an average
of 208 bp. The average intron length is 327 bp
with a minimum of 70 bp and a maximum of
1705 bp. The total numbers of donor and acceptor
sites are 57 and 58, respectively. To determine if
the genes in data set 1 are representative of maize
genes as a whole, we compared several of their
features to those of a set of 74 structure-known
maize genes downloaded from GenBank (Meth-
ods). The Kolmogorov-Smirnov test (Kolmogorov,
1933; Smirnov, 1939) revealed no significant dif-
ferences (P value >0.2) in the lengths and GC
contents of internal exons (i.e., those that begin
with an acceptor site and end with a donor site)
and introns (Figure 1). Therefore, data set 1 is at
least reasonably representative of the maize genes
that have been deposited in GenBank to date.

The performance of the five gene prediction
programs was evaluated at three levels: splice site,
nucleotide and exon (Methods). At the splice site
level, the accuracy of a program is measured by the
average value of SN (sensitivity) and SP (specific-
ity) since neither SN nor SP alone is sufficient to
indicate the ability of a program to predict genes
(Methods). FGENESH had the highest values of
(SN + SP)/2 (Table 3). These values are 0.91 for
donor sites and 0.92 for acceptor sites. Gene-
Mark.hmm was the second most accurate program

Table 3. The accuracy of gene predictions in data set 1 at the splice site level.

Programs Donor sites Acceptor sites

SN SP (SN + SP)/2 SN SP (SN + SP)/2
FGENESH 0.91 0.91 0.91 0.91 0.93 0.92
GeneMark.hmm 0.77 0.92 0.84 0.71 0.85 0.78
GENSCAN 0.56 0.91 0.74 0.53 0.86 0.70
GlimmerR 0.61 0.95 0.78 0.59 0.92 0.75
Gerail 0.49 0.39 0.44 0.66 0.51 0.58




with values of (SN + SP)/2 = 0.84 for donor sites
and 0.78 for acceptor sites. Both the SN and SP of
FGENESH’s predictions are high. In contrast,
GeneMark.hmm exhibits a higher value of SP than
SN. Such a differential is also present in the pre-
dictions from GENSCAN and GlimmerR which
have SPs close to those of FGENESH and Gene-
Mark.hmm but that have much lower SNs.
GeneMark.hmm, GENSCAN and GlimmerR
predict donor sites better than acceptor sites.

Accuracy at the nucleotide level (Table 4) is
measured by the value of the correlation coefficient
(CC, Methods). The programs, from the most
accurate to the least measured by the CC, are
FGENESH (0.93), GeneMark.hmm (0.89),
GENSCAN (0.82), GlimmerR (0.71) and Grail
(0.43). FGENESH has the highest SN (0.97) and
GENSCAN has the highest SP (0.95). The values of
SN and SP for FGENESH and GeneMark.hmm
are both high (over 0.90). Although the SP values
of GENSCAN and GlimmerR are also high (0.95
and 0.91, respectively), their SN values are less
favorable (0.81 and 0.70, respectively).

At the exon level, the programs with values of
(SN + SP)/2 from the highest to lowest are:
FGENESH (0.87), GeneMark.hmm (0.75),
GENSCAN (0.68), GlimmerR (0.57) and Grail
(0.31). FGENESH has both the highest SN and SP
(0.86 and 0.88, respectively). The SPs of Gene-
Mark.hmm and GENSCAN (0.80 and 0.81,
respectively) compare favorably with those of
FGENESH but their SNs compare less favorably
(0.69 and 0.54, respectively). GlimmerR also
exhibits better SP than SN. Consistent with its
highest SN and SP among the five evaluated pro-
grams, FGENESH has the lowest percentage of
missing (ME% = 4.6) and wrong (WE% = 3.1)
exons. Although the values of WE% in Gene-
Mark.hmm, GENSCAN and GlimmerR predic-
tions are not high (5.4, 7.0 and 7.7, respectively), the
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values of ME% are 19, 39, and 23, respectively.
Grail exhibited the lowest SN and SP and had
correspondently high percentages of both MEs
(ME% = 17) and WEs (WE% = 31). Predicted
exons can have only one correct boundary (PE,
partial exon) or can overlap the true exon but
lack two correct boundaries (OE, overlapped
exon). Of the exons predicted by FGENESH
9.4% and 0% were PEs and OEs, respectively.
These are the lowest values of all evaluated pro-
grams. Predictions from GeneMark.hmm and
GENSCAN also contain no OEs but 14% and
12% PEs, respectively. GlimmerR and Grail pre-
dicted both PEs and OEs, but the values of PE%
are much higher than that of OE%.

Gene discovery in the al-sh2 interval

To test the ability of the five evaluated programs
to discover new maize genes, each was used to
predict the structures of genes in the 15,783 bp
(GenBank accession no. AF434192) and 6506-bp
fragments (GenBank accession no. AF434193) of
the 140-kb maize al-sh2 interval (Yao et al., 2002)
(Figure 2). Because the a/-sh2 sequences were not
released to the public until after the completion of
this evaluation, these sequences also could not
have been included in the training sets of any of
the prediction programs.

The Bennetzen lab (Chen and Bennetzen, 1996;
Chen et al., 1998) sequenced the al-sh2 intervals of
rice and sorghum (GenBank accession no. U70541
and AF010283, respectively) and predicted a genic
sequence between the al and sh2 loci, which they
termed ‘Gene X°. The identification of its maize
homologue has been described by Yao ef al
(2002). Comparison of the genomic and cDNA
sequences revealed that the maize x/ gene contains
seven exons (Figure 2). Comparisons of the se-
quences of both the rice and maize full-length x/

Table 4. The accuracy of gene predictions in data set 1 at the nucleotide and exon levels.

Programs Nucleotide level Exon level

SN SP CC SN SP (SN + SP)/2 PE% OE% ME% WE%
FGENESH 0.97 0.94 0.93 0.86 0.88 0.87 9.4 0 4.6 3.1
GeneMark.hmm 0.92 0.93 0.89 0.69 0.80 0.75 14 0 19 5.4
GENSCAN 0.81 0.95 0.82 0.54 0.81 0.68 12 0 39 7.0
GlimmerR 0.70 091 0.71 0.51 0.64 0.57 23 5.8 23 7.7
Grail 0.55 0.67 0.43 0.34 0.28 0.31 33 7.7 17 31
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Figure 2. Gene discovery in the a/-sh2 interval of maize. The gene structures of the yz/ and x/ genes predicted by the five indicated
programs and their actual structures as verified via RT-PCR and sequencing of cDNA clones are shown. The positions of initiation
Mets (M) in the actual genes and predicted gene models are shown. The positions of stop codon are designated by*. Gray regions are
conserved among rice, sorghum and maize. In the gene models predicted by GlimmerR, exons filled with different patterns belong to
different predicted genes. Primers used in RT-PCR are shown as horizontal arrows.

cDNAs to the predicted rice or sorghum ‘Gene X’
showed that only the 5" portion of the predicted
‘Gene X’ corresponds to the actual rice and maize
x1 genes.

Comparisons of al-sh2 derived sequences from
rice, sorghum and maize revealed a conserved
region other than the a/ and x/ (Figure 2). This
conserved region is located at the distal end of the
15,783-bp portion of the maize al-sh2 interval
(GenBank accession no. AF434192) and overlaps
with the 3’-portion of the predicted ‘Gene X in rice
and sorghum. Since the actual rice and maize x/
genes do not contain this conserved region and
part of this region is single-copy in the maize
genome (Yao et al., 2002), we hypothesized that
there is another gene in the a/-sh2 interval. To test
this hypothesis, the five gene prediction programs
were used to conduct predictions in a 5.4-kb seg-
ment from the distal end of the 15,783-bp sequence
within the al-sh2 interval. All programs predicted
a gene in this 5.4-kb sequence (Figure 2), although
the predicted gene structures vary. To confirm the
validity of these predictions, primers (YZ4b and
YZ2587) were designed in the putative exonic
regions that were predicted by most programs
and that exhibit a high degree of sequence simi-
larity among rice, sorghum and maize (Figure 2).
RT-PCR amplification using these primers and
comparison of the sequence of the amplified frag-

ment to the 5.4-kb genomic sequence revealed that
as predicted by the ab initio programs, an addi-
tional expressed gene (termed as yz/) is present in
the al-sh2 interval (Methods).

A 1.4-kb yzI cDNA was isolated (Methods)
that is nearly full-length, probably lacking only the
five codons at its 5" end where a putative initiation
Met resides. This putative initiation Met was pre-
dicted based on the fact that it and the following
four amino acids are conserved among rice, sor-
ghum and maize. Comparison of the 1.4-kb cDNA
sequence of yz/ to the 5.4-kb genomic sequence
showed that the genomic sequence of yzl is
approximately 2.7 kb and consists of seven exons.
In a more recently submitted a/-sh2 sequence from
the rice cultivar japonica (GenBank accession no.
AF101045), the original ‘Gene X” has been anno-
tated as x/ and x2 which are homologs of the
maize x/ and yzI genes, respectively.

Comparisons of predicted and actual yz1 and x1
splice sites and gene structures

Because a complete gene model predicted by
FGENESH, GeneMark.hmm, GENSCAN and
GlimmerR begins with the start codon and ends
with the stop codon, the 5’- and 3’-UTRs of yzl
and x/ were not considered in the following
comparisons.



FGENESH gave the second best prediction for
the yz1 gene and the best prediction for the x/ gene
at the splice site, nucleotide and exon levels (data
not shown). Even so, none of the gene models
predicted by FGENESH, GeneMark.hmm, GEN-
SCAN and GlimmerR for yz/ and x/ is completely
correct (Figure 2). The start and stop codons of
yzI are located in the first and the last (seventh)
exons, respectively. Although FGENESH, Gene-
Mark.hmm and GENSCAN correctly predicted the
positions of the stop codons, each of these pro-
grams missed the start codon by predicting the
first exon as internal rather than initial (i.e., one
that starts with the initiation codon and ends with a
donor site). The start and stop codons of x/ are
located in the second and last (seventh) exons,
respectively. None of the four programs correctly
predicted the position of the start codon. Whereas
FGENESH, GENSCAN and GlimmerR correctly
predicted the location of the stop codon, Gene-
Mark.hmm’s prediction is incorrect.

A particular problem with predicting maize
genes using the version of GlimmerR that was
trained for rice is that it splits maize genes. As
shown in Figure 2, GlimmerR predicted multiple
genes using the yz/ and x/ gene sequences. It
predicted three genes in both the yz/- and the
x1-containing sequences: two of these predicted
genes each consists of a single exon (which starts
with an initiation codon and ends with a stop
codon); while in each case the other predicted gene
contains multiple exons. GlimmerR was used to
predict genes in genomic sequences from the rice
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al-sh2 interval that correspond to the x/ and yzl
genes. Although the sensitivity of GlimmerR in
predicting x/ and yz/ was not improved by using
rice sequences, no split genes were predicted (data
not shown). Hence, the observed gene splitting
could be a consequence of using a version of
GlimmerR that had been trained on rice to predict
maize genes.

Gene predictions in MAGIs

Gene prediction programs are of particular
importance in predicting genes in large genome
projects. We therefore extended our evaluations to
the maize GSSs being generated as part of the NSF
Plant Genome project 0221536 and assembled into
MAGIs at Iowa State University (http://plant-
genomics.iastate.edu/maize). Data set 2 consists of
1353 MAGTI contigs that aligned well with B73 3’
ESTs sequenced by us and that contain at least one
pair of reliable donor and acceptor sites flanking
an intact intron (Figure 3 and Supplementary
Materials). There are 1928 pairs of reliable canonical
splice sites and 18 pairs of reliable non-canonical
splice sites (16 GC-AG pairs, 2 AT-AC pairs) in this
data set that correspond to 592 reliable exons and
1946 reliable introns. Detailed statistical character-
istics of data set 2 are provided in Figure 1.

Data set 2 was analyzed with only FGENESH,
GeneMark.hmm and GENSCAN because these
programs were trained using maize sequences and
proved more reliable in the analyses of data set 1
than other two programs. Predictions of data set 2

Region used in the evaluation

Figure 3. Criteria used to select qualified alignments for data set 2. ESTs that contained polyA tails of at least 8 A’s were aligned to
MAGTI contigs. Alignments between a genomic sequence and an EST can be either terminal or internal. To qualify, terminal alignments
(TA) between a MAGI contig and EST must be 250 bp with 298% nucleotide identity; internal alignments (IA) must be flanked by two
qualified terminal alignments and exhibit >298% nucleotide identity. In addition, the 10 bp alignments at each splice junctions (shaded
regions) must exhibit 100% nucleotide identity. It is possible that the end points of the alignment may not be the real boundaries of
exons due to the incompleteness of the MAGI contig (e.g., 3" end) or the EST (e.g., the 5" end). These end points were therefore masked
and not used to evaluate FGENESH, GeneMark.hmm and GENSCAN. Although not shown in this figure there are MAGI contigs
that contain only two qualified terminal alignments and MAGI contigs that contain more than one qualified internal alignments. M’s:
masked end points of an alignment between a MAGI contig and EST; D’s, donor sites; A’s, acceptor sites.
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from each of the three tested programs were
parsed for subsequent analysis. Only regions
flanked by two reliable splice sites and without the
presence of non-reliable internal splice sites were
considered in the evaluation (Figure 3). As was
done for data set 1, the accuracy of the predictions
by each of the three programs was evaluated at the
splice site, nucleotide and exon levels (Methods).
As shown in Table 5, the overall accuracy of each
the program was somewhat reduced as compared
to that obtained using data set 1 (Tables 3 and 4)
due to the decreased specificities of the predictions
at the nucleotide and exon levels and decreased
sensitivities at all three levels. At the splice site
level, the specificities of the predictions by the
three programs remained high and indeed in-
creased somewhat. Overall, FGENESH performed
better than the other two programs because of
its much higher sensitivity, even though its speci-
ficity is slightly lower than that GeneMark.hmm
(Table 5).

At the nucleotide level, FGENESH’s values of
SN and SP are 0.86 and 0.84, respectively with a
CC of 0.83. Consistently, when considering only
the MAGTIs that have FGENESH predictions at
the regions evaluated in our analyses (Figure 3),
SN and SP are well correlated at the nucleotide
level; this reflects the fact that the majority of these
MAGIs have SN and SP values equal to 1 (data
not shown). Therefore, if a MAGI is predicted by
FGENESH to contain a gene, that prediction is
likely to be correct.

When running FGENESH to predict genes in
data set 2, the ~“GC’ parameter was used. This
allows FGENESH to predict non-canonical GC
donor sites. FGENESH correctly predicted 13/16
(81%) of the non-canonical GC donor sites in
data set 2. In contrast, none of these GC donor

Table 5. The accuracy of gene predictions in data set 2.

sites were correctly predicted by GeneMark.hmm
and GENSCAN. Neither of the two pairs of
non-canonical AT-AC splice sites in the data set 2
was identified by any of the three programs.

FGENESH, GeneMark.hmm and GENSCAN
correctly predicted the gene models in 773, 625,
and 371 MAGTIs, respectively, out of the 1353
MAGTIs in data set 2 (Figure 4). FGENESH,
GeneMark.hmm and GENSCAN uniquely and
correctly predicted 214, 94, and 21 MAGIs,
respectively. FGENESH, GeneMark.hmm and
GENSCAN failed to predict the evaluated regions
as genic in 249, 235, and 540 MAGISs, respectively.
FGENESH, GeneMark.hmm and GENSCAN
uniquely missed the evaluated genic segments
completely in 50, 31, and 275 MAGTSs, respectively.

If the predictions from all three programs are
considered together, the number of correctly pre-
dicted MAGTIs increases to 911 and the numbers of
MAGTISs that were completely missed drops to 112.
These results suggest that combining the predic-
tion results from different programs can increase
the accuracy of predictions.

Comparisons of predictions of internal vs. initial/
terminal exons

In vertebrate and Drosophila genomic sequences
FGENESH and GENSCAN predict internal
exons better than they predict initial and terminal
exons (i.e., those that begin with an acceptor site
and end with a stop codon) (Burge and Karlin,
1998; Salamov and Solovyev, 2000). This reflects
the poorer abilities of these programs to detect
the correct start and stop codons than their abili-
ties to correctly identify splice sites. The abilities
of the four programs evaluated in this study,
FGENESH, GeneMark.hmm, GENSCAN and

Donor sites

Acceptor sites

Nucleotide level

Exon level

SN sp ONSP gy gp BNSP g gp cc sN osp SNSP pp 4 OE)% WE% ME%
GENSCAN 041 095 0.68 039 092 0.66 046 0.86 0.60 033 0.57 045 36 76 57
GeneMark.hmm 0.69 094 0.82  0.63 093 0.78  0.77 0.88 080 0.66 0.67 0.66 28 59 20
FGENESH 073 095 0.84 071 092 082 086 0.84 083 074 0.65 069 27 82 14
FGENESH 071 095 0.83  0.67 094 0.81 083 086 082 072 0.68 070 27 44 17

(score > 0)*

“FGENESH (score >0) is a modified evaluation of the FGENESH’s prediction, in which predicted exons with negative scores were

treated as if there were no predictions and which were therefore not included in the evaluation.



Correct prediction

Missed

Wrong prediction

Figure 4. Numbers of MAGIs correctly predicted, missed or
predicted completely incorrectly by FGENESH, Gene-
Mark.hmm and GENSCAN. In these comparisons, the entire
gene model in the evaluated region of each MAGI (Figure 3)
was considered. Predictions that exactly matched the actual
gene model were classified as correctly predicted. Predictions
that failed to identify the evaluated region as genic were clas-
sified as missed. Genic predictions that failed to correctly
identify any features of the actual gene model were classified as
completely incorrect. F, FGENESH; GM, GeneMark.hmm;
GS, GENSCAN.
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GlimmerR, to predict initial/terminal exons versus
internal exons were compared at the exon level
using the eight genes in data set 1 and the yz/ and
x1 genes from the al-sh2 interval. Grail was not
included in this analysis because it does not predict
exons as initial, internal and terminal.

As expected based on experience from other
genomes, FGENESH, GeneMark.hmm and
GlimmerR predicted the internal exons better than
the initial and terminal exons (Table 6). Surpris-
ingly, GENSCAN predicted initial and terminal
exons better than it did internal exons due to its
higher SN of the initial and terminal exons in data
set 1.

Selecting reliable exon prediction

The accuracy of gene prediction at the exon level,
as well as the prediction of gene models is not as
high as the accuracy at the nucleotide level. This is
because more than 12% of the predicted exons are
PEs, OEs and WEs (Tables 4 and 5). In applica-
tions such as primer design for RT-PCR experi-
ments or the design of oligos for microarrays, it is
highly desirable to be able to exclude WE predic-
tions. Of the two most reliable programs in this
evaluation, FGENESH and GeneMark.hmm,
only FGENESH reports a confidence score for its
exonic predictions. This score is an aggregate of
log-odds scores that the base pairs are members of
an exon. Unfortunately, we have been unable to
locate in FGENESH documentation or its refer-
ences the method used to estimate the context-
sensitive probability that a base is a member of an
exon or the method of aggregating these scores
into an overall exon score.

To determine if an FGENESH exon score
correlates with the quality of prediction, the dis-
tributions of exon’s scores were compared among
the TEs, PEs + OEs and WEs (Figure 5) from
predictions using data set 2. About 49% of the
WESs have negative scores. In contrast, only 2.2%
of the TEs and 6.6% of the PEs and OEs have
negative scores. Considering only predicted exons
with non-negative scores, 68% are TEs, 27% are
PEs + OEs, and only 4.5% are WEs. These re-
sults demonstrate that removing exons with neg-
ative FGENESH scores eliminates almost half of
the WEs, while retaining the majority of the TEs
and PEs + OEFEs. Indeed, in data set 2 all WEs
have scores of less than 10 (Figure 5). Hence, if
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Table 6. Comparisons of accuracy at the exon level between the prediction of initial/terminal exons and internal exons.

Programs Initial and terminal exon Internal exon

SN sp BSNISP ppos Opy, ME% WE% SN osp SNSPLoppos OEy ME% WE%
FGENESH 0.77 0.72 0.74 22 0 0 5.6 0.87 0.85 0.86 82 0 5.0 6.6
GeneMark.hmm 0.71 0.60 0.65 20 5.0 0 15 0.67 0.80 0.73 14 0 22 6.0
GENSCAN 0.71 0.63 0.67 16 0 12 21 042 0.83 0.63 13 0 52 33
GlimmerR 0.47 0.44 0.46 17 11 29 28 0.48 0.66 0.57 25 6.8 25 23

only those predicted exons with scores greater than
10 were used, WEs could be totally eliminated.
To determine the effect of removing exons with
negative scores on the evaluation of FGENESH,
the parameters for the evaluation of FGENESH’s
predictions at the splice site, nucleotide and exon
levels were recalculated for data set 2 (Table 5,
FGENESH (score > 0)). In this analysis, predicted
exons with negative scores were treated as they had
not been predicted. This modified analysis resulted
in higher SPs at all three levels as compared to the
SPs obtained in the original analysis of FGE-
NESH. In contrast, SNs decreased. The values of
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(SN + SP)/2 for splice site and exon levels, CC,
and ME% and WE% were altered only slightly.

Discussion

FGENESH performed better than other evaluated
programs for maize gene discovery

The goal of this study was to identify a strategy
based on existing ab initio gene prediction tools
that biologists can use to discover maize genes in
genomic sequences. Accordingly the performances

E TE (n=436)
B PE+OE (n=183)
OWE (n=55)

50

40

30

Percentage

20

Al

<0 <5 <10 <15 <20

<25 <30 <35 <40 <45

>=45

Exon Scores

Figure 5. The distributions of exon scores among the TE (true exon), PE + OE (partial and overlapped exon) and WE (wrong exon)

predicted by FGENESH using data set 2.



of five ab initio gene prediction programs were
evaluated using data set 1, which consists of eight
maize genes that could not have been used to train
these programs. These eight genes are structurally
similar to a larger set of 74 structure-known genes
downloaded from GenBank (Figure 1). Hence, eval-
uation of predictions performed on the eight genes
in data set 1 are likely to be informative of the ability
of these programs to predict other maize genes.

In these evaluations FGENESH performed the
best at all three levels of evaluation. FGENESH
has also been demonstrated to be more accurate
than other tested programs for the discovery of
rice and mammalian genes (Solovyev, 2001; Yu
et al., 2002). GeneMark.hmm is the most accurate
program for Arabidopsis gene discovery when
evaluated using the AraSet that contains contigs of
validated genes (Pavy et al., 1999). In our evalua-
tion, GeneMark.hmm was the second most accu-
rate program. GENSCAN, which is very good at
predicting mammalian genes (Rogic et al., 2001),
fared less well in our analysis of maize genes. This
may be due to the fact that GENSCAN was
trained on a smaller data set than FGENESH and
GeneMark.hmm (Supplementary Materials). One
reason for the poor performance of GlimmerR
and Grail in predicting the maize genes may be
because they had been trained for other plants
(including rice and Arabidopsis, Table 1). Since
gene features differ among organisms, it is likely
that the parameters of these programs have not
been optimized for maize gene discovery. Addi-
tional evaluations of FGENESH, Gene-
Mark.hmm and GENSCAN using data set 2,
which consists of 1353 genic MAGIs, also dem-
onstrated that FGENESH is most accurate at
predicting maize genes. It is, however, important

Table 7. Comparisons of gene model predictions.
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to emphasize that this study was not designed to
evaluate the algorithms used by these programs.
On the other hand, this study does reveal which
existing programs will provide maize biologists
with the best gene predictions.

Predictions of small exons may be less accurate

The accuracies of FGENESH, GeneMark.hmm
and GENSCAN predictions in data set 2 are not
as high as those in data set 1. This may be due to
the increased fraction of small exons (e.g.,
<100 bp) in data set 2 as compared to data set 1
(Figure 1). This enrichment for small exons in data
set 2 is probably a consequence of our stringent
EST-guided strategy to select reliable genic regions
in MAGTIs for analyses (Figure 3, Methods and
Supplementary Materials). It has been demon-
strated that in rice genes FGENESH is not as
successful at predicting small exons (less than
200 bp) as large exons (Yu et al, 2002). The
finding that in data set 2 the fractions of MEs in
exons that are smaller than 50 bp is significantly
higher than the corresponding fraction among
larger (> 50 bp) exons (3> test, P value = 0.002) is
consistent with the hypothesis that this enrichment
for small exons is at least partly responsible for the
reduced accuracy of predictions in data set 2 as
compared to those of data set 1.

Gene model prediction programs need improvement

As shown in Table 7, none of the four gene model
prediction programs (FGENESH, GeneMark.hmm,
GENSCAN and GlimmerR) precisely predicted
the structures of more than half of the eight genes
in data set 1 plus the two genes from the al-sh2

Programs gl8a  pdc2  pdce3  rf2c  rf2d  rf2el  rthl  rth3  xI  yzI  Number (%) of

correct models
FGENESH Y? Y N Y Y N N Y N N 5 (50%)
GeneMark.hmm Y N Y Y N N N Y N N 4 (40%)
GENSCAN Y Y Y Y Y N N N N N 5 (50%)
GlimmerR N N Y N N N N N N N 1 (9%)
Number of programs 3 2 3 3 2 0 0 2 0 0

that predicted correct models

1Y, Prediction of the gene model is correct.
PN, prediction of gene model is incorrect.
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interval. The structures of four genes (rf2el, x1,
rthl, and yz1) were not predicted correctly by any
of the four programs. These programs each appear
to have difficulties predicting gene models that
include non-canonical splice sites, start codons
that are not in the first exon, or large numbers
of small exons and/or large introns. For example,
the inability of these programs to correctly pre-
dict non-canonical splice sites appears to be the
reason they failed to predict correctly the gene
model of rf2el. The rf2el gene contains two
pairs of non-canonical splice sites, GC/AG and
CC/AA, in introns 2 and 3, respectively. Each of
the four programs missed both of these two
non-canonical donor and acceptor sites.

The start codon of the x/ gene is in its second
exon (Figure 2), which may interfere with the
ability of prediction programs to identify it. The
reason for the incorrect prediction of the start
codon in the yzI gene is not clear. The rthl gene
has 25 exons, each of which is less than the average
length of maize exons (i.e., ~200 bp, Table 2).
Thirteen of the rthl exons are between 50 and
100 bp, eight are between 100 and 150 bp and the
remaining four are between 150 and 200 bp in
length. In contrast, eight of the rth/ introns are
larger than the average maize intron (i.e.,
~300 bp, Table 2) and four are over 900 bp. All of
the four assayed programs missed some of rthl’s
small exons and incorrectly predicted the presence
of exons within rthl’s large introns. Three of the
programs (GENSCAN, GeneMark.hmm and
GlimmerR) even split the rzhl gene, which may
indicate a poor ability to predict large genes. As
pointed out by Wang et al. (2003) because ab initio
programs predict genes based on statistical anal-
yses of all possible genic features (e.g., splice sites,
start and stop codons), longer sequences have an
increased probability on containing false genic
features that exhibit statistical significance. In
addition, stop codons are more likely to be asso-
ciated with FP predictions in intron, which could
split large genes (which usually contain large in-
trons). Our study provides additional evidence
that GlimmerR’s predictions tend to incorrectly
split maize genes. GlimmerR split five genes (g/8a,
rf2el, rthl, yzI, and xI). Since GlimmerR was
trained for rice, the current version may not suit-
able for the prediction of maize genes. We con-
clude that ab initio gene model prediction remains
a field that would benefit from further research.

The ability of FGENESH to predict non-canonical
splice sites

Non-canonical splice sites can make the accurate
prediction of gene models difficult because until
recently no program was trained to recognize non-
canonical splice sites due to an insufficient number
of non-canonical sites in the training sets. As more
genomic sequences have become available, data
sets of EST-supported canonical and non-canoni-
cal mammalian splice sites have been created and
analyzed (Burset et al., 2000, 2001). In these
mammalian splice site data sets, the canonical GT—
AG pairs account for 98.7% of all splice site pairs;
non-canonical GC-AG pairs and AT-AC pairs
account for 0.56% and 0.05%, respectively, and all
other non-canonical pairs account for 0.02%. The
collection of GC-AG pairs in this mammalian
data set was large enough for training and an
updated version of FGENESH (for mammals)
incorporates GC donor sites in its predictions.

Analysis of spliced alignments between clus-
tered Arabidopsis EST and genomic sequences also
showed that the canonical GT-AG pairs account
for the majority of the splice sites in Arabidopsis
(Zhu et al., 2003). In that species the frequencies of
the non-canonical GC-AG and AT-AC sites have
been estimated to be about 1.0% and 0.06%,
respectively. These may, however be over-estimates
because ambiguous splice sites were included in
this analysis (Zhu et al., 2003). In our data set 2,
99.1% of all sites were canonical GT-AG pairs
and non-canonical GC-AG and AT-AC pairs rep-
resent 0.822% and 0.103% of all pairs, respectively.
This result indicates that the fractions of non-
canonical GC-AG pairs in maize and Arabidopsis
and AT-AC pairs in maize may be higher than in
mammalian genomes.

By using the ‘~“GC’ parameter, FGENESH was
able to identify 81% (13/16) of the non-canonical
GC donor sites in data set 2. Since most donor
sites in data set 2 are canonical and the sensitivity
of them is 0.73, FGENESH’s sensitivity for
non-canonical GC sites is at least as good as it’s
sensitivity for canonical GT sites.

Recommendations for gene prediction
Of the evaluated ab initio programs FGENESH

provided the highest degree of SP and SN,
followed by GeneMark.hmm. Both of these pro-



grams provide high levels of SP with acceptable
(but somewhat lower) levels of SN. Consequently,
if a sequence is predicted to contain a gene, that
prediction is likely to be correct, but some se-
quences that do contain genes will be missed.
Using its ‘“GC’ parameter, FGENESH is able to
identify many non-canonical GC donor sites.
Removing exons with negative FGENESH scores
will eliminate most of the WEs, while retaining
the majority of the TEs and PEs + OEs. There-
fore, for RT-PCR experiments and microarray de-
sign projects it is better to avoid designing primers
or oligos in predicted exons with negative scores. If
the specificity of exon prediction is the priority,
predicted exons with even higher scores (=10) should
be used. Although will result in the loss of correct
exons, it will also eliminate essentially all wrong
exons.

Combining gene prediction results from multi-
ple ab initio programs improves gene model pre-
dictions (reviewed by Mathé et al., 2002) because
even a good program can make incorrect predic-
tions for some genes and even a poor program can
make correct predictions for some genes. For
example, as shown in Table 7, FGENESH did not
correctly predict the gene model of pdc3, but the
other three programs did. Moreover, analysis of
predictions of genes in data set 2 suggests that by
considering predictions from FGENESH, Gene-
Mark.hmm and GENSCAN, it is possible to im-
prove the accuracy of ab initio gene discovery
(Figure 4). Integration of ab initio and sequence
similarity based approaches is another way to
improve the accuracy of gene prediction and is
likely to be more widely used as the number of
sequenced genomes increases (reviewed by Mathé
et al., 2002). The Twinscan (Korf et al., 2001) and
Combiner (Allen et al., 2004) programs improve
the accuracy of gene predictions via these two
approaches. The development of similar programs
or the training of existing programs for maize
sequences could also contribute to the efficient
discovery of maize genes.

No matter which approaches are taken, a good
training data set is essential to improve the accu-
racy of gene predictions in new species. The most
straightforward method to improve the quality of
a training set is to increase the number of gene
sequences. Korf (2004) has recently suggested an
alternative computational approach for situations
when this is not possible.
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